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� Introduction and Applications

This section is devoted to basic concepts in partial dierential equations� We start the
chapter with de�nitions so that we are all clear when a term like linear partial dierential
equation �PDE� or second order PDE is mentioned� After that we give a list of physical
problems that can be modelled as PDEs� An example of each class �parabolic� hyperbolic and
elliptic� will be derived in some detail� Several possible boundary conditions are discussed�

��� Basic Concepts and De�nitions

De�nition �� A partial dierential equation �PDE� is an equation containing partial deriva�
tives of the dependent variable�
For example� the following are PDEs

ut � cux � � �������

uxx � uyy � f�x� y� �������

��x� y�uxx � �uxy � 	x�uyy � �ex �����	�

uxuxx � �uy�
� � � �������

�uxx�
� � uyy � a�x� y�ux � b�x� y�u � � � �����
�

Note� We use subscript to mean dierentiation with respect to the variables given� e�g�

ut �
�u

�t
� In general we may write a PDE as

F �x� y� � � � � u� ux� uy� � � � � uxx� uxy� � � �� � � �������

where x� y� � � � are the independent variables and u is the unknown function of these variables�
Of course� we are interested in solving the problem in a certain domain D� A solution is a
function u satisfying �������� From these many solutions we will select the one satisfying
certain conditions on the boundary of the domain D� For example� the functions

u�x� t� � ex�ct

u�x� t� � cos�x� ct�

are solutions of �������� as can be easily veri�ed� We will see later �section 	��� that the
general solution of ������� is any function of x� ct�

De�nition �� The order of a PDE is the order of the highest order derivative in the equation�
For example ������� is of �rst order and ������� � �����
� are of second order�

De�nition 	� A PDE is linear if it is linear in the unknown function and all its derivatives
with coe�cients depending only on the independent variables�

�



For example ������� � �����	� are linear PDEs�

De�nition �� A PDE is nonlinear if it is not linear� A special class of nonlinear PDEs will
be discussed in this book� These are called quasilinear�

De�nition 
� A PDE is quasilinear if it is linear in the highest order derivatives with coe��
cients depending on the independent variables� the unknown function and its derivatives of
order lower than the order of the equation�
For example ������� is a quasilinear second order PDE� but �����
� is not�

We shall primarily be concerned with linear second order PDEs which have the general
form

A�x� y�uxx�B�x� y�uxy�C�x� y�uyy�D�x� y�ux�E�x� y�uy�F �x� y�u � G�x� y� � �������

De�nition �� A PDE is called homogeneous if the equation does not contain a term inde�
pendent of the unknown function and its derivatives�
For example� in ������� if G�x� y� � �� the equation is homogenous� Otherwise� the PDE is
called inhomogeneous�
Partial dierential equations are more complicated than ordinary dierential ones� Recall
that in ODEs� we �nd a particular solution from the general one by �nding the values of
arbitrary constants� For PDEs� selecting a particular solution satisfying the supplementary
conditions may be as di�cult as �nding the general solution� This is because the general
solution of a PDE involves an arbitrary function as can be seen in the next example� Also�
for linear homogeneous ODEs of order n� a linear combination of n linearly independent
solutions is the general solution� This is not true for PDEs� since one has an in�nite number
of linearly independent solutions�

Example

Solve the linear second order PDE
u����� 	� � � �������

If we integrate this equation with respect to 	� keeping � �xed� we have

u� � f���

�Since � is kept �xed� the integration constant may depend on ���
A second integration yields �upon keeping 	 �xed�

u��� 	� �
Z
f���d� �G�	�

Note that the integral is a function of �� so the solution of ������� is

u��� 	� � F ��� �G�	� � �������

To obtain a particular solution satisfying some boundary conditions will require the deter�
mination of the two functions F and G� In ODEs� on the other hand� one requires two
constants� We will see later that ������� is the one dimensional wave equation describing the
vibration of strings�

�



Problems

�� Give the order of each of the following PDEs

a� uxx � uyy � �
b� uxxx � uxy � a�x�uy � log u � f�x� y�
c� uxxx � uxyyy � a�x�uxxy � u� � f�x� y�
d� u uxx � u�yy � eu � �
e� ux � cuy � d

�� Show that
u�x� t� � cos�x� ct�

is a solution of
ut � cux � �

	� Which of the following PDEs is linear� quasilinear� nonlinear� If it is linear� state
whether it is homogeneous or not�

a� uxx � uyy � �u � x�

b� uxy � u
c� u ux � x uy � �
d� u�x � log u � �xy
e� uxx � �uxy � uyy � cos x
f� ux�� � uy� � uxx
g� �sin ux�ux � uy � ex

h� �uxx � �uxy � �uyy � 	u � �
i� ux � uxuy � uxy � �

�� Find the general solution of
uxy � uy � �

�Hint� Let v � uy�


� Show that
u � F �xy� � xG�

y

x
�

is the general solution of
x�uxx � y�uyy � �

	



��� Applications

In this section we list several physical applications and the PDE used to model them� See�
for example� Fletcher ������� Haltiner and Williams ������� and Pedlosky �������

For the heat equation �parabolic� see de�nition � later��

ut � kuxx �in one dimension� �������

the following applications

�� Conduction of heat in bars and solids

�� Diusion of concentration of liquid or gaseous substance in physical chemistry

	� Diusion of neutrons in atomic piles

�� Diusion of vorticity in viscous �uid �ow


� Telegraphic transmission in cables of low inductance or capacitance

�� Equilization of charge in electromagnetic theory�

�� Long wavelength electromagnetic waves in a highly conducting medium

�� Slow motion in hydrodynamics

�� Evolution of probability distributions in random processes�

Laplace�s equation �elliptic�

uxx � uyy � � �in two dimensions� �������

or Poisson�s equation
uxx � uyy � S�x� y� �����	�

is found in the following examples

�� Steady state temperature

�� Steady state electric �eld �voltage�

	� Inviscid �uid �ow

�� Gravitational �eld�

Wave equation �hyperbolic�

utt � c�uxx � � �in one dimension� �������

appears in the following applications

�



�� Linearized supersonic air�ow

�� Sound waves in a tube or a pipe

	� Longitudinal vibrations of a bar

�� Torsional oscillations of a rod


� Vibration of a �exible string

�� Transmission of electricity along an insulated low�resistance cable

�� Long water waves in a straight canal�

Remark� For the rest of this book when we discuss the parabolic PDE

ut � kr�u �����
�

we always refer to u as temperature and the equation as the heat equation� The hyperbolic
PDE

utt � c�r�u � � �������

will be referred to as the wave equation with u being the displacement from rest� The elliptic
PDE

r�u � Q �������

will be referred to as Laplace�s equation �if Q � �� and as Poisson�s equation �if Q �� ���
The variable u is the steady state temperature� Of course� the reader may want to think
of any application from the above list� In that case the unknown u should be interpreted
depending on the application chosen�

In the following sections we give details of several applications� The �rst example leads
to a parabolic one dimensional equation� Here we model the heat conduction in a wire �or a
rod� having a constant cross section� The boundary conditions and their physical meaning
will also be discussed� The second example is a hyperbolic one dimensional wave equation
modelling the vibrations of a string� We close with a three dimensional advection diusion
equation describing the dissolution of a substance into a liquid or gas� A special case �steady
state diusion� leads to Laplace�s equation�

��� Conduction of Heat in a Rod

Consider a rod of constant cross section A and length L �see Figure �� oriented in the x
direction�
Let e�x� t� denote the thermal energy density or the amount of thermal energy per unit
volume� Suppose that the lateral surface of the rod is perfectly insulated� Then there is no
thermal energy loss through the lateral surface� The thermal energy may depend on x and t
if the bar is not uniformly heated� Consider a slice of thickness �x between x and x ��x�






0 Lx x+∆ x

A

Figure �� A rod of constant cross section

If the slice is small enough then the total energy in the slice is the product of thermal energy
density and the volume� i�e�

e�x� t�A�x � ���	���

The rate of change of heat energy is given by

�

�t
�e�x� t�A�x� � ���	���

Using the conservation law of heat energy� we have that this rate of change per unit time
is equal to the sum of the heat energy generated inside per unit time and the heat energy
�owing across the boundaries per unit time� Let 
�x� t� be the heat �ux �amount of thermal
energy per unit time �owing to the right per unit surface area�� Let S�x� t� be the heat
energy per unit volume generated per unit time� Then the conservation law can be written
as follows

�

�t
�e�x� t�A�x� � 
�x� t�A� 
�x ��x� t�A� S�x� t�A�x � ���	�	�

This equation is only an approximation but it is exact at the limit when the thickness of the
slice �x� �� Divide by A�x and let �x� �� we have

�

�t
e�x� t� � � lim

�x��


�x ��x� t�� 
�x� t�

�x� �z �
�
���x� t�

�x

�S�x� t� � ���	���

We now rewrite the equation using the temperature u�x� t�� The thermal energy density
e�x� t� is given by

e�x� t� � c�x���x�u�x� t� ���	�
�

where c�x� is the speci�c heat �heat energy to be supplied to a unit mass to raise its tempera�
ture by one degree� and ��x� is the mass density� The heat �ux is related to the temperature
via Fourier�s law


�x� t� � �K�u�x� t�

�x
���	���

where K is called the thermal conductivity� Substituting ���	�
� � ���	��� in ���	��� we obtain

c�x���x�
�u

�t
�

�

�x

�
K
�u

�x

�
� S � ���	���

For the special case that c� �� K are constants we get

ut � kuxx �Q ���	���

�



where

k �
K

c�
���	���

and

Q �
S

c�
���	����

��� Boundary Conditions

In solving the above model� we have to specify two boundary conditions and an initial
condition� The initial condition will be the distribution of temperature at time t � �� i�e�

u�x� �� � f�x� �

The boundary conditions could be of several types�

�� Prescribed temperature �Dirichlet b�c��

u��� t� � p�t�

or
u�L� t� � q�t� �

�� Insulated boundary �Neumann b�c��

�u��� t�

�n
� �

where
�

�n
is the derivative in the direction of the outward normal� Thus at x � �

�

�n
� � �

�x

and at x � L
�

�n
�

�

�x

�see Figure ���

n n

x

Figure �� Outward normal vector at the boundary

This condition means that there is no heat �owing out of the rod at that boundary�

�



	� Newton�s law of cooling

When a one dimensional wire is in contact at a boundary with a moving �uid or gas�
then there is a heat exchange� This is speci�ed by Newton�s law of cooling

�K���
�u��� t�

�x
� �Hfu��� t�� v�t�g

where H is the heat transfer �convection� coe�cient and v�t� is the temperature of the sur�
roundings� We may have to solve a problem with a combination of such boundary conditions�
For example� one end is insulated and the other end is in a �uid to cool it�

�� Periodic boundary conditions

We may be interested in solving the heat equation on a thin circular ring �see �gure 	��

x=0 x=L

Figure 	� A thin circular ring

If the endpoints of the wire are tightly connected then the temperatures and heat �uxes at
both ends are equal� i�e�

u��� t� � u�L� t�

ux��� t� � ux�L� t� �

�



Problems

�� Suppose the initial temperature of the rod was

u�x� �� �

�
�x � � x � ���
���� x� ��� � x � �

and the boundary conditions were

u��� t� � u��� t� � � �

what would be the behavior of the rod�s temperature for later time�

�� Suppose the rod has a constant internal heat source� so that the equation describing the
heat conduction is

ut � kuxx �Q� � � x � � �

Suppose we �x the temperature at the boundaries

u��� t� � �

u��� t� � � �

What is the steady state temperature of the rod� �Hint� set ut � � ��

	� Derive the heat equation for a rod with thermal conductivity K�x��

�� Transform the equation
ut � k�uxx � uyy�

to polar coordinates and specialize the resulting equation to the case where the function u
does NOT depend on �� �Hint� r �

p
x� � y�� tan � � y�x�


� Determine the steady state temperature for a one�dimensional rod with constant thermal
properties and

a� Q � �� u��� � �� u�L� � �
b� Q � �� ux��� � �� u�L� � �
c� Q � �� u��� � �� ux�L� � 


d�
Q

k
� x�� u��� � �� ux�L� � �

e� Q � �� u��� � �� ux�L� � u�L� � �

�



��� A Vibrating String

Suppose we have a tightly stretched string of length L� We imagine that the ends are tied
down in some way �see next section�� We describe the motion of the string as a result of
disturbing it from equilibrium at time t � �� see Figure ��

0 x

u(x)

L

x axis

Figure �� A string of length L

We assume that the slope of the string is small and thus the horizontal displacement can
be neglected� Consider a small segment of the string between x and x � �x� The forces
acting on this segment are along the string �tension� and vertical �gravity�� Let T �x� t� be
the tension at the point x at time t� if we assume the string is �exible then the tension is in
the direction tangent to the string� see Figure 
�

0

x axis

u(x) u(x+dx)

x+dxx L

T(x+dx)

T(x)

Figure 
� The forces acting on a segment of the string

The slope of the string is given by

tan � � lim
�x��

u�x��x� t�� u�x� t�

�x
�
�u

�x
� ���
���

Thus the sum of all vertical forces is�

T �x ��x� t� sin ��x ��x� t�� T �x� t� sin ��x� t� � ���x��xQ�x� t� ���
���

where Q�x� t� is the vertical component of the body force per unit mass and �o�x� is the
density� Using Newton�s law

F � ma � ���x��x
��u

�t�
� ���
�	�

Thus

���x�utt �
�

�x
�T �x� t� sin ��x� t�� � ���x�Q�x� t� ���
���

For small angles ��
sin � � tan � ���
�
�

Combining ���
��� and ���
�
� with ���
��� we obtain

���x�utt � �T �x� t�ux�x � ���x�Q�x� t� ���
���

��



For perfectly elastic strings T �x� t� 	� T�� If the only body force is the gravity then

Q�x� t� � �g ���
���

Thus the equation becomes
utt � c�uxx � g ���
���

where c� � T�����x� �
In many situations� the force of gravity is negligible relative to the tensile force and thus we
end up with

utt � c�uxx � ���
���

��� Boundary Conditions

If an endpoint of the string is �xed� then the displacement is zero and this can be written as

u��� t� � � �������

or
u�L� t� � � � �������

We may vary an endpoint in a prescribed way� e�g�

u��� t� � b�t� � �����	�

A more interesting condition occurs if the end is attached to a dynamical system �see e�g�
Haberman ����

T�
�u��� t�

�x
� k �u��� t�� uE�t�� � �������

This is known as an elastic boundary condition� If uE�t� � �� i�e� the equilibrium position
of the system coincides with that of the string� then the condition is homogeneous�

As a special case� the free end boundary condition is

�u

�x
� � � �����
�

Since the problem is second order in time� we need two initial conditions� One usually has

u�x� �� � f�x�

ut�x� �� � g�x�

i�e� given the displacement and velocity of each segment of the string�

��



Problems

�� Derive the telegraph equation

utt � aut � bu � c�uxx

by considering the vibration of a string under a damping force proportional to the velocity
and a restoring force proportional to the displacement�

�� Use Kircho�s law to show that the current and potential in a wire satisfy

ix � C vt �Gv � �
vx � L it �Ri � �

where i � current� v � L � inductance potential� C � capacitance� G � leakage conduc�
tance� R � resistance�

b� Show how to get the one dimensional wave equations for i and v from the above�

��



��	 Di
usion in Three Dimensions

Diusion problems lead to partial dierential equations that are similar to those of heat
conduction� Suppose C�x� y� z� t� denotes the concentration of a substance� i�e� the mass
per unit volume� which is dissolving into a liquid or a gas� For example� pollution in a lake�
The amount of a substance �pollutant� in the given domain V with boundary � is given byZ

V
C�x� y� z� t�dV � �������

The law of conservation of mass states that the time rate of change of mass in V is equal to
the rate at which mass �ows into V minus the rate at which mass �ows out of V plus the
rate at which mass is produced due to sources in V � Let�s assume that there are no internal
sources� Let q be the mass �ux vector� then q � n gives the mass per unit area per unit time
crossing a surface element with outward unit normal vector n�

d

dt

Z
V
CdV �

Z
V

�C

�t
dV � �

Z
�
q � n dS� �������

Use Gauss divergence theorem to replace the integral on the boundaryZ
�
q � n dS �

Z
V
div q dV� �����	�

Therefore
�C

�t
� �div q� �������

Fick�s law of diusion relates the �ux vector q to the concentration C by

q � �DgradC � Cv �����
�

where v is the velocity of the liquid or gas� and D is the diusion coe�cient which may
depend on C� Combining ������� and �����
� yields

�C

�t
� div �DgradC�� div�C v�� �������

If D is constant then
�C

�t
� Dr�C �r � �C v� � �������

If v is negligible or zero then
�C

�t
� Dr�C �������

which is the same as ���	����
If D is relatively negligible then one has a �rst order PDE

�C

�t
� v � rC � C div v � � � �������

�	



At steady state �t large enough� the concentration C will no longer depend on t� Equation
������� becomes

r � �DrC��r � �C v� � � ��������

and if v is negligible or zero then

r � �DrC� � � ��������

which is Laplace�s equation�

��



� Classi�cation and Characteristics

In this chapter we classify the linear second order PDEs� This will require a discussion of
transformations� characteristic curves and canonical forms� We will show that there are three
types of PDEs and establish that these three cases are in a certain sense typical of what
occurs in the general theory� The type of equation will turn out to be decisive in establishing
the kind of initial and boundary conditions that serve in a natural way to determine a
solution uniquely �see e�g� Garabedian ��������

��� Physical Classi�cation

Partial dierential equations can be classi�ed as equilibrium problems and marching prob�
lems� The �rst class� equilibrium or steady state problems are also known as elliptic� For
example� Laplace�s or Poisson�s equations are of this class� The marching problems include
both the parabolic and hyperbolic problems� i�e� those whose solution depends on time�

��� Classi�cation of Linear Second Order PDEs

Recall that a linear second order PDE in two variables is given by

Auxx �Buxy � Cuyy �Dux � Euy � Fu � G �������

where all the coe�cients A through F are real functions of the independent variables x� y�
De�ne a discriminant ��x� y� by

��x�� y�� � B��x�� y��� �A�x�� y��C�x�� y��� �������

�Notice the similarity to the discriminant de�ned for conic sections��

De�nition �� An equation is called hyperbolic at the point �x�� y�� if ��x�� y�� � �� It is
parabolic at that point if ��x�� y�� � � and elliptic if ��x�� y�� � ��

The classi�cation for equations with more than two independent variables or with higher
order derivatives are more complicated� See Courant and Hilbert �
��

Example�
utt � c�uxx � �

A � �� B � �� C � �c�

Therefore�
� � �� � � � ���c�� � �c� 
 �

Thus the problem is hyperbolic for c �� � and parabolic for c � ��

The transformation leads to the discovery of special loci known as characteristic curves
along which the PDE provides only an incomplete expression for the second derivatives�
Before we discuss transformation to canonical forms� we will motivate the name and explain
why such transformation is useful� The name canonical form is used because this form

�




corresponds to particularly simple choices of the coe�cients of the second partial derivatives�
Such transformation will justify why we only discuss the method of solution of three basic
equations �heat equation� wave equation and Laplace�s equation�� Sometimes� we can obtain
the solution of a PDE once it is in a canonical form �several examples will be given later in this
chapter�� Another reason is that characteristics are useful in solving �rst order quasilinear
and second order linear hyperbolic PDEs� which will be discussed in the next chapter� �In
fact nonlinear �rst order PDEs can be solved that way� see for example F� John ��������

To transform the equation into a canonical form� we �rst show how a general transfor�
mation aects equation �������� Let �� 	 be twice continuously dierentiable functions of
x� y

� � ��x� y�� �����	�

	 � 	�x� y�� �������

Suppose also that the Jacobian J of the transformation de�ned by

J �

����� �x �y
	x 	y

����� �����
�

is non zero� This assumption is necessary to ensure that one can make the transformation
back to the original variables x� y�

Use the chain rule to obtain all the partial derivatives required in �������� It is easy to see
that

ux � u��x � u�	x �������

uy � u��y � u�	y� �������

The second partial derivatives can be obtained as follows�

uxy � �ux�y � �u��x � u�	x�y

� �u��x�y � �u�	x�y

� �u��y�x � u��xy � �u��y	x � u�	xy

Now use �������

uxy � �u���y � u��	y��x � u��xy � �u���y � u��	y�	x � u�	xy�

Reorganize the terms

uxy � u���x�y � u����x	y � �y	x� � u��	x	y � u��xy � u�	xy� �������

In a similar fashion we get uxx� uyy

uxx � u���
�
x � �u���x	x � u��	

�
x � u��xx � u�	xx� �������

uyy � u���
�
y � �u���y	y � u��	

�
y � u��yy � u�	yy� ��������

��



Introducing these into ������� one �nds after collecting like terms

A�u�� �B�u�� � C�u�� �D�u� � E�u� � F �u � G� ��������

where all the coe�cients are now functions of �� 	 and

A� � A��x �B�x�y � C��y ��������

B� � �A�x	x �B��x	y � �y	x� � �C�y	y ������	�

C� � A	�x �B	x	y � C	�y ��������

D� � A�xx �B�xy � C�yy �D�x � E�y ������
�

E� � A	xx �B	xy � C	yy �D	x � E	y ��������

F � � F ��������

G� � G� ��������

The resulting equation �������� is in the same form as the original one� The type of the
equation �hyperbolic� parabolic or elliptic� will not change under this transformation� The
reason for this is that

�� � �B��� � �A�C� � J��B� � �AC� � J�� ��������

and since J �� �� the sign of �� is the same as that of �� Proving �������� is not complicated
but de�nitely messy� It is left for the reader as an exercise using a symbolic manipulator
such as MACSYMA or MATHEMATICA�

The classi�cation depends only on the coe�cients of the second derivative terms and thus
we write ������� and �������� respectively as

Auxx �Buxy � Cuyy � H�x� y� u� ux� uy� ��������

and
A�u�� �B�u�� � C�u�� � H���� 	� u� u�� u��� ��������

��



Problems

�� Classify each of the following as hyperbolic� parabolic or elliptic at every point �x� y� of
the domain

a� x uxx � uyy � x�

b� x� uxx � �xy uxy � y�uyy � ex

c� exuxx � eyuyy � u
d� uxx � uxy � xuyy � � in the left half plane �x � ��
e� x�uxx � �xyuxy � y�uyy � xyux � y�uy � �
f� uxx � xuyy � � �Tricomi equation�

�� Classify each of the following constant coe�cient equations

a� �uxx � 
uxy � uyy � ux � uy � �
b� uxx � uxy � uyy � ux � �
c� 	uxx � ��uxy � 	uyy � �
d� uxx � �uxy � 	uyy � �ux � 
uy � u � ex

e� �uxx � �uxy � �uyy � 	u � �
f� uxx � 
uxy � �uyy � �uy � sin x

	� Use any symbolic manipulator �e�g� MACSYMA or MATHEMATICA� to prove ���������
This means that a transformation does NOT change the type of the PDE�

��



��� Canonical Forms

In this section we discuss canonical forms� which correspond to particularly simple choices of
the coe�cients of the second partial derivatives of the unknown� To obtain a canonical form�
we have to transform the PDE which in turn will require the knowledge of characteristic
curves� Three equivalent properties of characteristic curves� each can be used as a de�nition�
�� Initial data on a characteristic curve cannot be prescribed freely� but must satisfy a
compatibility condition�
�� Discontinuities �of a certain nature� of a solution cannot occur except along characteristics�
	� Characteristics are the only possible  branch lines! of solutions� i�e� lines for which the
same initial value problems may have several solutions�

We now consider speci�c choices for the functions �� 	� This will be done in such a way
that some of the coe�cients A�� B�� and C� in �������� become zero�

����� Hyperbolic

Note that A�� C� are similar and can be written as

A��x �B�x�y � C��y ���	�����

in which � stands for either � or 	� Suppose we try to choose �� 	 such that A� � C� � �� This
is of course possible only if the equation is hyperbolic� �Recall that �� � �B�����A�C� and
for this choice �� � �B��� � �� Since the type does not change under the transformation�
we must have a hyperbolic PDE�� In order to annihilate A� and C� we have to �nd � such
that

A��x �B�x�y � C��y � �� ���	�����

Dividing by ��y � the above equation becomes

A

�
�x
�y

��

�B

�
�x
�y

�
� C � �� ���	���	�

Along the curve
��x� y� � constant� ���	�����

we have
d� � �xdx� �ydy � �� ���	���
�

Therefore�
�x
�y

� �dy
dx

���	�����

and equation ���	���	� becomes

A

�
dy

dx

��

� B
dy

dx
� C � �� ���	�����

��



This is a quadratic equation for
dy

dx
and its roots are

dy

dx
�

B �pB� � �AC

�A
� ���	�����

These equations are called characteristic equations and are ordinary diential equations
for families of curves in x� y plane along which � � constant� The solutions are called
characteristic curves� Notice that the discriminant is under the radical in ���	����� and since
the problem is hyperbolic� B� � �AC � �� there are two distinct characteristic curves� We
can choose one to be ��x� y� and the other 	�x� y�� Solving the ODEs ���	������ we get

���x� y� � C�� ���	�����

���x� y� � C�� ���	������

Thus the transformation
� � ���x� y� ���	������

	 � ���x� y� ���	������

will lead to A� � C� � � and the canonical form is

B�u�� � H� ���	����	�

or after division by B�

u�� �
H�

B� � ���	������

This is called the �rst canonical form of the hyperbolic equation�
Sometimes we �nd another canonical form for hyperbolic PDEs which is obtained by

making a transformation
� � � � 	 ���	����
�

� � � � 	� ���	������

Using ���	���������	����� for this transformation one has

u�� � u�� � H����� �� u� u�� u��� ���	������

This is called the second canonical form of the hyperbolic equation�

Example
y�uxx � x�uyy � � for x � �� y � � ���	������

A � y�

B � �

C � �x�

� � �� �y���x�� � �x�y� � �

��



The equation is hyperbolic for all x� y of interest�

The characteristic equation

dy

dx
�

��p�x�y�

�y�
�
��xy
�y�

� �x
y
� ���	������

These equations are separable ODEs and the solutions are

�

�
y� � �

�
x� � c�

�

�
y� �

�

�
x� � c�

The �rst is a family of hyperbolas and the second is a family of circles �see �gure ���
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Figure �� The families of characteristics for the hyperbolic example

We take then the following transformation

� �
�

�
y� � �

�
x� ���	������

	 �
�

�
y� �

�

�
x� ���	������

Evaluate all derivatives of �� 	 necessary for ������� � ��������

�x � �x� �y � y� �xx � ��� �xy � �� �yy � �

	x � x� 	y � y� 	xx � �� 	xy � �� 	yy � ��

Substituting all these in the expressions for B�� D�� E� �you can check that A� � C� � ��

B� � �y���x�x � ���x��y � y � ��x�y� � �x�y� � ��x�y��

D� � y����� � ��x�� � � � �x� � y��

��



E� � y� � � � ��x�� � � � y� � x��

Now solve ���	������ � ���	������ for x� y

x� � 	 � ��

y� � � � 	�

and substitute in B�� D�� E� we get

���	 � ���� � 	�u�� � ��	 � � � � � 	�u� � �� � 	 � 	 � ��u� � �

���� � 	��u�� � �	u� � ��u� � �

u�� �
	

���� � 	��
u� � �

���� � 	��
u� ���	������

This is the �rst canonical form of ���	�������

����� Parabolic

Since �� � �� B� � �AC � � and thus

B � ��
p
A
p
C� ���	�����

Clearly we cannot arrange for both A� and C� to be zero� since the characteristic equation
���	����� can have only one solution� That means that parabolic equations have only one
characteristic curve� Suppose we choose the solution ���x� y� of ���	�����

dy

dx
�

B

�A
���	�����

to de�ne
� � ���x� y�� ���	���	�

Therefore A� � ��

Using ���	����� we can show that

� � A� � A��x �B�x�y � C��y
� A��x � �

p
A
p
C�x�y � C��y

�
�p

A�x �
p
C�y

	� ���	�����

It is also easy to see that

B� � �A�x	x �B��x	y � �y	x� � �C�y	y
� ��

p
A�x �

p
C�y��

p
A	x �

p
C	y�

� �

��



The last step is a result of ���	������ Therefore A� � B� � �� To obtain the canonical form

we must choose a function 	�x� y�� This can be taken judiciously as long as we ensure that
the Jacobian is not zero�

The canonical form is then
C�u�� � H�

and after dividing by C� �which cannot be zero� we have

u�� �
H�

C� � ���	���
�

If we choose 	 � ���x� y� instead of ���	���	�� we will have C� � �� In this case B� � �
because the last factor

p
A	x �

p
C	y is zero� The canonical form in this case is

u�� �
H�

A� ���	�����

Example
x�uxx � �xyuxy � y�uyy � ex ���	�����

A � x�

B � ��xy
C � y�

� � ���xy�� � � � x� � y� � �x�y� � �x�y� � ��

Thus the equation is parabolic for all x� y� The characteristic equation ���	����� is

dy

dx
�
��xy
�x�

� �y
x
� ���	�����

Solve
dy

y
� �dx

x

ln y � lnx � C

In �gure � we sketch the family of characteristics for ���	������ Note that since the problem
is parabolic� there is ONLY one family�

Therefore we can take � to be this family

� � ln y � lnx ���	�����

and 	 is arbitrary as long as J �� �� We take

	 � x� ���	������

�	
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Figure �� The family of characteristics for the parabolic example

Computing the necessary derivatives of �� 	 we have

�x �
�

x
� �y �

�

y
� �xx � � �

x�
� �xy � �� �yy � � �

y�

	x � �� 	y � 	xx � 	xy � 	yy � ��

Substituting these derivatives in the expressions for C�� D�� E� �recall that A� � B� � � �

C� � x� � �

D� � x� � �� �

x�
�� �xy � � � y��� �

y�
� � ��� � � ��

E� � ��

The equation in the canonical form � H� � �D�u� �G� in this case�

u�� �
�u� � ex

x�

Now we must eliminate the old variables� Since x � 	 we have

u�� �
�

	�
u� �

�

	�
e�� ���	������

Note that a dierent choice for 	 will lead to a dierent right hand side in ���	�������

����� Elliptic

This is the case that � � � and therefore there are NO real solutions to the characteristic
equation ���	������ Suppose we solve for the complex valued functions � and 	� We now
de�ne

� �
� � 	

�
���	�	���

� �
� � 	

�i
���	�	���

��



that is � and � are the real and imaginary parts of �� Clearly 	 is the complex conjugate
of � since the coe�cients of the characteristic equation are real� If we use these functions
��x� y� and ��x� y� we get an equation for which

B�� � �� A�� � C��� ���	�	�	�

To show that ���	�	�	� is correct� recall that our choice of �� 	 led to A� � C� � �� These
are

A� � �A��
x�B�x�y�C�

�
y���A��

x�B�x�y�C�
�
y��i��A�x�x�B��x�y��y�x���C�y�y� � �

C� � �A��
x�B�x�y�C�

�
y���A��

x�B�x�y�C�
�
y��i��A�x�x�B��x�y��y�x���C�y�y� � �

Note the similarity of the terms in each bracket to those in ���	����������	������

A� � �A�� � C��� � iB�� � �

C� � �A�� � C���� iB�� � �

where the double starred coe�cients are given as in ���	����������	������ except that �� �
replace �� 	 correspondingly� These last equations can be satis�ed if and only if ���	�	�	� is
satis�ed�

Therefore
A��u�� � A��u�� � H����� �� u� u�� u��

and the canonical form is

u�� � u�� �
H��

A�� � ���	�	���

Example
exuxx � eyuyy � u ���	�	�
�

A � ex

B � �

C � ey

� � �� � �exey � �� for all x� y

The characteristic equation

dy

dx
�

��p��exey
�ex

�
��ipexey

�ex
� �i

s
ey

ex

dy

ey��
� �i dx

ex��
�

Therefore
� � ��e�y�� � �ie�x��

	 � ��e�y�� � �ie�x��

�




The real and imaginary parts are�
� � ��e�y�� ���	�	���

� � ��e�x��� ���	�	���

Evaluate all necessary partial derivatives of �� �

�x � �� �y � e�y��� �xx � �� �xy � �� �yy � ��

�
e�y��

�x � e�x��� �y � �� �xx � ��

�
e�x��� �xy � �� �yy � �

Now� instead of using both transformations� we recall that ���	����������	������ are valid with
�� � instead of �� 	� Thus

A� � ex � � � � � ey
�
e�y��

	�
� �

B� � � � � � � � � as can be expected

C� � ex
�
e�x��

	�
� � � � � � as can be expected

D� � � � � � ey


��

�
e�y��

�
� ��

�
ey��

E� � ex


��

�
e�x��

�
� � � � � ��

�
ex��

F � � ��
H� � �D�u� � E�u� � F �u �

�

�
ey��u� �

�

�
ex��u� � u�

Thus

u�� � u�� �
�

�
ey��u� �

�

�
ex��u� � u�

Using ���	�	�������	�	��� we have

ex�� � � �

�

ey�� � � �

�

and therefore the canonical form is

u�� � u�� � � �

�
u� � �

�
u� � u� ���	�	���

��



Problems

�� Find the characteristic equation� characteristic curves and obtain a canonical form for
each

a� x uxx � uyy � x�

b� uxx � uxy � xuyy � � �x � �� all y�
c� x�uxx � �xyuxy � y�uyy � xyux � y�uy � �
d� uxx � xuyy � �
e� uxx � y�uyy � y
f� sin� xuxx � sin �xuxy � cos� xuyy � x

�� Use Maple to plot the families of characteristic curves for each of the above�

��



��� Equations with Constant Coe�cients

In this case the discriminant is constant and thus the type of the equation is the same
everywhere in the domain� The characteristic equation is easy to integrate�

����� Hyperbolic

The characteristic equation is
dy

dx
�
B �p�

�A
� ���������

Thus

dy �
B �p�

�A
dx

and integration yields two families of straight lines

� � y � B �
p
�

�A
x ���������

	 � y � B �p�

�A
x� �������	�

Notice that if A � � then ��������� is not valid� In this case we recall that ��������� is

B�x�y � C��y � � ���������

If we divide by ��y as before we get

B
�x
�y

� C � � �������
�

which is only linear and thus we get only one characteristic family� To overcome this di�culty
we divide ��������� by ��x to get

B
�y
�x

� C

�
�y
�x

��

� � ���������

which is quadratic� Now
�y
�x

� �dx
dy

and so
dx

dy
�

B �pB� � � � � � C
�C

�
B �B

�C
or

dx

dy
� ��

dx

dy
�
B

C
� ���������

The transformation is then
� � x� ���������

	 � x� B

C
y� ���������

The canonical form is similar to ���	�������

��



����� Parabolic

The only solution of ��������� is
dy

dx
�

B

�A
�

Thus

� � y � B

�A
x� ���������

Again 	 is chosen judiciously but in such a way that the Jacobian of the transformation is
not zero�
Can A be zero in this case� In the parabolic case A � � impliesB � � �since � � B������C
must be zero�� Therefore the original equation is

Cuyy �Dux � Euy � Fu � G

which is already in canonical form

uyy � �D
C
ux � E

C
uy � F

C
u�

G

C
� ���������

����� Elliptic

Now we have complex conjugate functions �� 	

� � y � B � i
p��

�A
x� �����	���

	 � y � B � i
p��

�A
x� �����	���

Therefore

� � y � B

�A
x� �����	�	�

� �
�p��

�A
x� �����	���

�Note that �� � � and the radical yields a real number�� The canonical form is similar to
���	�	����

Example
utt � c�uxx � � �wave equation� �����	�
�

A � �

B � �

C � �c�

� � �c� � � �hyperbolic��

��



The characteristic equation is �
dx

dt

��

� c� � �

and the transformation is
� � x � ct� �����	���

	 � x� ct� �����	���

The canonical form can be obtained as in the previous examples

u�� � �� �����	���

This is exactly the example from Chapter � for which we had

u��� 	� � F ��� �G�	�� �����	���

The solution in terms of x� t is then �use �����	���������	����

u�x� t� � F �x� ct� �G�x� ct�� �����	����

	�



Problems

�� Find the characteristic equation� characteristic curves and obtain a canonical form for

a� �uxx � 
uxy � uyy � ux � uy � �
b� uxx � uxy � uyy � ux � �
c� 	uxx � ��uxy � 	uyy � x� �
d� uxx � �uxy � 	uyy � �ux � 
uy � u � ex

e� �uxx � �uxy � �uyy � 	u � �
f� uxx � 
uxy � �uyy � �uy � sin x

�� Use Maple to plot the families of characteristic curves for each of the above�

	�



��� Linear Systems

In general� linear systems can be written in the form�

�u

�t
� A

�u

�x
�B

�u

�y
� r � � ���
���

where u is a vector valued function of t� x� y�
The system is called hyperbolic at a point �t� x� if the eigenvalues of A are all real and

distinct� Similarly at a point �t� y� if the eigenvalues of B are real and distinct�

Example The system of equations
vt � cwx ���
���

wt � cvx ���
�	�

can be written in matrix form as
�u

�t
� A

�u

�x
� � ���
���

where

u �

�
v
w

�
���
�
�

and

A �

�
� �c
�c �

�
� ���
���

The eigenvalues of A are given by
�� � c� � � ���
���

or � � c��c� Therefore the system is hyperbolic� which we knew in advance since the system
is the familiar wave equation�

Example The system of equations
ux � vy ���
���

uy � �vx ���
���

can be written in matrix form
�w

�x
� A

�w

�y
� � ���
����

where

w �

�
u
v

�
���
����

and

A �

�
� ��
� �

�
� ���
����

The eigenvalues of A are given by
�� � � � � ���
��	�

or � � i��i� Therefore the system is elliptic� In fact� this system is the same as Laplace�s
equation�

	�



��� General Solution

As we mentioned earlier� sometimes we can get the general solution of an equation by trans�
forming it to a canonical form� We have seen one example �namely the wave equation� in
the last section�

Example
x�uxx � �xyuxy � y�uyy � �� �������

Show that the canonical form is

u�� � � for y �� � �������

uxx � � for y � �� �����	�

To solve ������� we integrate with respect to 	 twice �� is �xed� to get

u��� 	� � 	F ��� �G���� �������

Since the transformation to canonical form is

� �
y

x
	 � y �arbitrary choice for 	� �����
�

then

u�x� y� � yF


y

x

�
�G



y

x

�
� �������

Example

Obtain the general solution for

�uxx � 
uxy � uyy � ux � uy � �� �������

�This example is taken fromMyint�U and Debnath ��� ��� There is a mistake in their solution
which we have corrected here� The transformation

� � y � x�

	 � y � x

�
� �������

leads to the canonical form

u�� �
�

	
u� � �

�
� �������

Let v � u� then ������� can be written as

v� �
�

	
v � �

�
��������

which is a �rst order linear ODE �assuming 	 is �xed�� Therefore

v �
�

	
� e�����	�� ��������

		



Now integrating with respect to 	 yields

u��� 	� �
�

	
	 �G�	�e��� � F ���� ��������

In terms of x� y the solution is

u�x� y� �
�

	



y � x

�

�
�G



y � x

�

�
e�y�x	�� � F �y � x�� ������	�

	�



Problems

�� Determine the general solution of

a� uxx � �
c�
uyy � � c � constant

b� uxx � 	uxy � �uyy � �
c� uxx � uxy � �
d� uxx � ��uxy � �uyy � y

�� Transform the following equations to

U�� � cU

by introducing the new variables
U � ue����
��	

where �� � to be determined

a� uxx � uyy � 	ux � �uy � u � �
b� 	uxx � �uxy � �uyy � uy � u � �

�Hint� First obtain a canonical form�

	� Show that

uxx � aut � bux � b�

�
u� d

is parabolic for a� b� d constants� Show that the substitution

u�x� t� � v�x� t�e
b
�
x

transforms the equation to

vxx � avt � de�
b
�
x

	




Summary
Equation

Auxx �Buxy � Cuyy � �Dux � Euy � Fu�G � H�x� y� u� ux� uy�

Discriminant
��x�� y�� � B��x�� y��� �A�x�� y��C�x�� y��

Class
� � � hyperbolic at the point �x�� y��

� � � parabolic at the point �x�� y��

� � � elliptic at the point �x�� y��

Transformed Equation

A�u�� �B�u�� � C�u�� � �D�u� � E�u� � F �u�G� � H���� 	� u� u�� u��

where
A� � A��x �B�x�y � C��y

B� � �A�x	x �B��x	y � �y	x� � �C�y	y

C� � A	�x �B	x	y � C	�y

D� � A�xx �B�xy � C�yy �D�x � E�y

E� � A	xx �B	xy � C	yy �D	x � E	y

F � � F

G� � G

H� � �D�u� � E�u� � F �u�G�

dy

dx
�

B �p�

�A
characteristic equation

u�� �
H�

B� �rst canonical form for hyperbolic

u�� � u�� �
H��

B�� � � � � 	� � � � � 	 second canonical form for hyperbolic

u�� �
H�

A� a canonical form for parabolic

u�� �
H�

C� a canonical form for parabolic

u�� � u�� �
H��

A�� � � �� � 	���� � � �� � 	���i a canonical form for elliptic

	�



� Method of Characteristics

In this chapter we will discuss a method to solve �rst order linear and quasilinear PDEs�
This method is based on �nding the characteristic curve of the PDE� We will also show
how to generalize this method for a second order constant coe�cients wave equation� The
method of characteristics can be used only for hyperbolic problems which possess the right
number of characteristic families� Recall that for second order parabolic problems we have
only one family of characteristics and for elliptic PDEs no real characteristic curves exist�

��� Advection Equation ��rst order wave equation

The one dimensional wave equation

��u

�t�
� c�

��u

�x�
� � �	�����

can be rewritten as either of the following�
�

�t
� c

�

�x

��
�

�t
� c

�

�x

�
u � � �	�����

�
�

�t
� c

�

�x

��
�

�t
� c

�

�x

�
u � � �	���	�

since the mixed derivative terms cancel� If we let

v �
�u

�t
� c

�u

�x
�	�����

then �	����� becomes
�v

�t
� c

�v

�x
� �� �	���
�

Similarly �	���	� yields
�w

�t
� c

�w

�x
� � �	�����

if

w �
�u

�t
� c

�u

�x
� �	�����

The only dierence between �	���
� and �	����� is the sign of the second term� We now show
how to solve �	���
� which is called the �rst order wave equation or advection equation �in
Meteorology��
Remark� Although �	�������	���
� or �	�������	����� can be used to solve the one dimensional
second order wave equation �	����� � we will see in section 	�	 another way to solve �	�����
based on the results of Chapter ��

	�



To solve �	���
� we note that if we consider an observer moving on a curve x�t� then by
the chain rule we get

dv�x�t�� t�

dt
�
�v

�t
�
�v

�x

dx

dt
� �	�����

If the observer is moving at a rate
dx

dt
� c� then by comparing �	����� and �	���
� we �nd

dv

dt
� �� �	�����

Therefore �	���
� can be replaced by a set of two ODEs

dx

dt
� c� �	������

dv

dt
� �� �	������

These � ODEs are easy to solve� Integration of �	������ yields

x�t� � x��� � ct �	������

and the other one has a solution

v � constant along the curve given in �	�������

The curve �	������ is a straight line� In fact� we have a family of parallel straight lines� called
characteristics� see �gure ��
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Figure �� Characteristics t � �
c
x� �

c
x���

In order to obtain the general solution of the one dimensional equation �	���
� subject to
the initial value

v�x���� �� � f�x����� �	����	�

	�



we note that
v � constant along x�t� � x��� � ct

but that constant is f�x���� from �	����	�� Since x��� � x�t� � ct� the general solution is
then

v�x� t� � f�x�t�� ct�� �	������

Let us show that �	������ is the solution� First if we take t � �� then �	������ reduces to

v�x� �� � f�x���� c � �� � f�x�����

To check the PDE we require the �rst partial derivatives of v� Notice that f is a function of
only one variable� i�e� of x� ct� Therefore

�v

�t
�
df�x� ct�

dt
�

df

d�x� ct�

d�x� ct�

dt
� �c df

d�x� ct�

�v

�x
�

df�x� ct�

dx
�

df

d�x� ct�

d�x� ct�

dx
� �

df

d�x� ct�
�

Substituting these two derivatives in �	���
� we see that the equation is satis�ed�

Example �
�v

�t
� 	

�v

�x
� � �	����
�

v�x� �� �

�
�
�
x � � x � �
� otherwise�

�	������

The two ODEs are
dx

dt
� 	� �	������

dv

dt
� �� �	������

The solution of �	������ is
x�t� � x��� � 	t �	������

and the solution of �	������ is

v�x�t�� t� � v�x���� �� � constant� �	������

Using �	������ the solution is then

v�x�t�� t� �

�
�
�
x��� � � x��� � �
� otherwise�

Substituting x��� from �	������ we have

v�x� t� �

�
�
�
�x� 	t� � � x� 	t � �

� otherwise�
�	������

The interpretation of �	������ is as follows� Given a point x at time t� �nd the characteristic
through this point� Move on the characteristic to �nd the point x��� and then use the initial
value at that x��� as the solution at �x� t�� �Recall that v is constant along a characteristic��

	�



Let�s sketch the characteristics through the points x � �� � �see �	������ and Figure ���
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Figure �� � characteristics for x��� � � and x��� � �

The initial solution is sketched in �gure ��
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Figure ��� Solution at time t � �

This shape is constant along a characteristic� and moving at the rate of 	 units� For
example� the point x � �

�
at time t � � will be at x � 	�
 at time t � �� The solution v will

be exactly the same at both points� namely v � �
�
� The solution at several times is given in

�gure ���

��



x

v

t

Figure ��� Solution at several times

Example �
�u

�t
� �

�u

�x
� e�x �	������

u�x� �� � f�x�� �	����	�

The system of ODEs is
du

dt
� e�x �	������

dx

dt
� ��� �	����
�

Solve �	����
� to get the characteristic curve

x�t� � x���� �t� �	������

Substituting the characteristic equation in �	������ yields

du

dt
� e��x��	��t	�

Thus
du � e�x��	��tdt

u � K � �

�
e�x��	��t� �	������

At t � �

f�x���� � u�x���� �� � K � �

�
e�x��	

and therefore

K � f�x���� �
�

�
e�x��	� �	������

��



Substitute K in �	������ we have

u�x� t� � f�x���� �
�

�
e�x��	 � �

�
e�x��	��t�

Now substitute for x��� from �	������ we get

u�x� t� � f�x� �t� �
�

�
e��x
�t	 � �

�
e�x�

or

u�x� t� � f�x� �t� �
�

�
e�x
�
e�t � �

	
� �	������

Note that the �rst term on the right is the solution of the homogeneous equation and the
second term is a result of the inhomogeneity�

����� Numerical Solution

Here we discuss a general linear �rst order hyperbolic

a�x� t�ux � b�x� t�ut � c�x� t�u� d�x� t�� �	�����

Note that since b�x� t� may vanish� we cannot in general divide the equation by b�x� t� to get
it in the same form as we had before� Thus we parametrize x and t in terms of a parameter
s� and instead of taking the curve x�t�� we write it as x�s�� t�s��

The characteristic equation is now a system

dx

ds
� a�x�s�� t�s�� �	�����

x��� � � �	���	�

dt

ds
� b�x�s�� t�s�� �	�����

t��� � � �	���
�

du

ds
� c�x�s�� t�s��u�x�s�� t�s�� � d�x�s�� t�s�� �	�����

u��� �� � f��� �	�����

This system of ODEs need to be solved numerically� One possibility is the use of Runge�
Kutta method� This idea can also be used for quasilinear hyperbolic PDEs�

��



Problems

�� Solve
�w

�t
� 	

�w

�x
� �

subject to
w�x� �� � sinx

�� Solve using the method of characteristics

a�
�u

�t
� c

�u

�x
� e�x subject to u�x� �� � f�x�

b�
�u

�t
� x

�u

�x
� � subject to u�x� �� � f�x�

c�
�u

�t
� 	t

�u

�x
� u subject to u�x� �� � f�x�

d�
�u

�t
� �

�u

�x
� e�x subject to u�x� �� � cos x

e�
�u

�t
� t�

�u

�x
� �u subject to u�x� �� � 	ex

	� Show that the characteristics of

�u

�t
� �u

�u

�x
� �

u�x� �� � f�x�

are straight lines�

�� Consider the problem
�u

�t
� �u

�u

�x
� �

u�x� �� � f�x� �

��
�

� x � �
� � x

L
� � x � L

� L � x

a� Determine equations for the characteristics
b� Determine the solution u�x� t�
c� Sketch the characteristic curves�
d� Sketch the solution u�x� t� for �xed t�

�	



��� Quasilinear Equations

The method of characteristics is the only method applicable for quasilinear PDEs� All other
methods such as separation of variables� Green�s functions� Fourier or Laplace transforms
cannot be extended to quasilinear problems�

In this section� we describe the use of the method of characteristics for the solution of

�u

�t
� c�u� x� t�

�u

�x
� S�u� x� t� �	�����

u�x� �� � f�x�� �	�����

Such problems have applications in gas dynamics or tra�c �ow�
Equation �	����� can be rewritten as a system of ODEs

dx

dt
� c�u� x� t� �	���	�

du

dt
� S�u� x� t�� �	�����

The �rst equation is the characteristic equation� The solution of this system can be very
complicated since u appears nonlinearly in both� To �nd the characteristic curve one must
know the solution� Geometrically� the characteristic curve has a slope depending on the
solution u at that point� see �gure ���

t

xx 0

dx___

dt
=  c

du
___

dt

= S

Figure ��� u�x�� �� � f�x��

The slope of the characteristic curve at x� is

�

c�u�x��� x�� ��
�

�

c�f�x��� x�� ��
� �	���
�

Now we can compute the next point on the curve� by using this slope �assuming a slow
change of rate and that the point is close to the previous one�� Once we have the point� we
can then solve for u at that point�

��



����� The Case S � �� c � c�u�

The quasilinear equation
ut � c�u�ux � � �	�������

subject to the initial condition
u�x� �� � f�x� �	�������

is equivalent to
dx

dt
� c�u� �	�����	�

x��� � � �	�������

du

dt
� � �	�����
�

u��� �� � f���� �	�������

Thus
u�x� t� � u��� �� � f��� �	�������

dx

dt
� c�f����

x � tc�f���� � �� �	�������

Solve �	������� for � and substitute in �	������� to get the solution�
To check our solution� we compute the �rst partial derivatives of u

�u

�t
�

du

d�

d�

dt

�u

�x
�
du

d�

d�

dx
�

Dierentiating �	������� with respect to x and t we have

� � tc��f����f �����x � �x

� � c�f���� � tc��f����f �����t � �t

correspondingly�

Thus when recalling that
du

d�
� f ����

ut � � c�f����

� � tc��f����f ����
f ���� �	�������

ux �
�

� � tc��f����f ����
f ����� �	��������

Substituting these expressions in �	������� results in an identity� The initial condition
�	������� is exactly �	��������

�




Example 	
�u

�t
� u

�u

�x
� � �	��������

u�x� �� � 	x� �	��������

The equivalent system of ODEs is
du

dt
� � �	������	�

dx

dt
� u� �	��������

Solving the �rst one yields
u�x� t� � u�x���� �� � 	x���� �	������
�

Substituting this solution in �	��������

dx

dt
� 	x���

which has a solution
x � 	x���t� x���� �	��������

Solve �	�������� for x��� and substitute in �	������
� gives

u�x� t� �
	x

	t � �
� �	��������

����� Graphical Solution

Graphically� one can obtain the solution as follows�

u(x,0)=f(x) u(x,t)

x
0

x  + t c ( f(x  ))
0 0

u

x

Figure �	� Graphical solution

Suppose the initial solution u�x� �� is sketched as in �gure �	� We know that each u�x��
stays constant moving at its own constant speed c�u�x���� At time t� it moved from x� to
x��tc�f�x��� �horizontal arrow�� This process should be carried out to enough points on the
initial curve to get the solution at time t� Note that the lengths of the arrows are dierent
and depend on c�

��



Problems

�� Solve the following

a�
�u

�t
� � subject to u�x� �� � g�x�

b�
�u

�t
� �	xu subject to u�x� �� � g�x�

�� Solve
�u

�t
� u

subject to
u�x� t� � � � cos x along x� �t � �

	� Let
�u

�t
� c

�u

�x
� � c � constant

a� Solve the equation subject to u�x� �� � sin x
b� If c � �� determine u�x� t� for x � � and t � � where

u�x� �� � f�x� for x � �

u��� t� � g�t� for t � �

�� Solve the following linear equations subject to u�x� �� � f�x�

a�
�u

�t
� c

�u

�x
� e��x

b�
�u

�t
� t

�u

�x
� 


c�
�u

�t
� t�

�u

�x
� �u

d�
�u

�t
� x

�u

�x
� t

e�
�u

�t
� x

�u

�x
� x


� Determine the parametric representation of the solution satisfying u�x� �� � f�x��

a�
�u

�t
� u�

�u

�x
� 	u

��



b�
�u

�t
� t�u

�u

�x
� �u

�� Solve
�u

�t
� t�u

�u

�x
� 


subject to
u�x� �� � x�

��



����� Fan�like Characteristics

Since the slope of the characteristic�
�

c
� depends in general on the solution� one may have

characteristic curves intersecting or curves that fan�out� We demonstrate this by the follow�
ing example�

Example �
ut � uux � � �	���	���

u�x� �� �

�
� for x � �
� for x � ��

�	���	���

The system of ODEs is
dx

dt
� u� �	���	�	�

du

dt
� �� �	���	���

The second ODE satis�es
u�x� t� � u�x���� �� �	���	�
�

and thus the characteristics are

x � u�x���� ��t� x��� �	���	���

or

x�t� �

�
t� x��� if x��� � �
�t� x��� if x��� � ��

�	���	���
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Figure ��� The characteristics for Example �

Let�s sketch those characteristics �Figure ���� If we start with a negative x��� we obtain a
straight line with slope �� If x��� is positive� the slope is �

�
�

��



Since u�x���� �� is discontinuous at x��� � �� we �nd there are no characteristics through
t � �� x��� � �� In fact�� we imagine that there are in�nitely many characteristics with all
possible slopes from �

�
to �� Since the characteristics fan out from x � t to x � �t we call

these fan�like characteristics� The solution for t � x � �t will be given by �	���	��� with
x��� � �� i�e�

x � ut

or
u �

x

t
for t � x � �t� �	���	���

To summarize the solution is then

u �

��
�

� x��� � x� t � �
� x��� � x� �t � �
x

t
t � x � �t

�	���	���

The sketch of the solution is given in �gure �
�
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Figure �
� The solution of Example �

����� Shock Waves

If the initial solution is discontinuous� but the value to the left is larger than that to the
right� one will see intersecting characteristics�

Example 

ut � uux � � �	�������

u�x� �� �

�
� x � �
� x � ��

�	�������

�u � x�t is a general solution which only exists for t �� �� This is called rarefaction because it seems like
fanning out from the point of discontinuity �inviscid Burgers� equation��


�



The solution is as in the previous example� i�e�

x�t� � u�x���� ��t� x��� �	�����	�

x�t� �

�
�t � x��� if x��� � �
t � x��� if x��� � ��

�	�������

The sketch of the characteristics is given in �gure���

x

t

−3 −1 1 3

Figure ��� Intersecting characteristics

Since there are two characteristics through a point� one cannot tell on which character�
istic to move back to t � � to obtain the solution� In other words� at points of intersection
the solution u is multi�valued� This situation happens whenever the speed along the char�
acteristic on the left is larger than the one along the characteristic on the right� and thus
catching up with it� We say in this case to have a shock wave� Let x���� � x���� be two
points at t � �� then

x��t� � c �f�x������ t� x����
x��t� � c �f�x������ t� x�����

�	�����
�

If c�f�x������ � c�f�x������ then the characteristics emanating from x����� x���� will in�
tersect� Suppose the points are close� i�e� x���� � x���� � �x� then to �nd the point of
intersection we equate x��t� � x��t�� Solving this for t yields

t �
��x

�c �f�x������ � c �f�x���� � �x��
� �	�������

If we let �x tend to zero� the denominator �after dividing through by �x� tends to the
derivative of c� i�e�

t � � �

dc�f�x������

dx����

� �	�������

Since t must be positive at intersection �we measure time from zero�� this means that

dc

dx�
� �� �	�������


�



So if the characteristic velocity c is locally decreasing then the characteristics will intersect�
This is more general than the case in the last example where we have a discontinuity in the
initial solution� One can have a continuous initial solution u�x� �� and still get a shock wave�
Note that �	������� implies that

� � t
dc�f�

dx
� �

which is exactly the denominator in the �rst partial derivative of u �see �	���������	����������

Example �
ut � uux � � �	�������

u�x� �� � �x� �	��������

The solution of the ODEs
du

dt
� ��

dx

dt
� u�

�	��������

is
u�x� t� � u�x���� �� � �x���� �	��������

x�t� � �x���t � x��� � x������ t�� �	������	�

Solving for x��� and substituting in �	�������� yields

u�x� t� � � x�t�

�� t
� �	��������

This solution is unde�ned at t � �� If we use �	������� we get exactly the same value for t�
since

f�x�� � �x� �from �	��������

c�f�x��� � u�x�� � �x� �from �	�������

dc

dx�
� ��

t � � �

�� � ��

In the next �gure we sketch the characteristics given by �	������	�� It is clear that all
characteristics intersect at t � �� The shock wave starts at t � �� If the initial solution is
discontinuous then the shock wave is formed immediately�

How do we �nd the shock position xs�t� and its speed� To this end� we rewrite the
original equation in conservation law form� i�e�

ut �
�

�x
q�u� � � �	������
�

or Z �

�
utdx �

d

dt

Z �

�
udx � �qj���


�
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Figure ��� Sketch of the characteristics for Example �

This is equivalent to the quasilinear equation �	������� if q�u� � �
�
u��

The terms  conservative form!�  conservation�law form!�  weak form! or  divergence
form! are all equivalent� PDEs having this form have the property that the coe�cients of
the derivative term are either constant or� if variable� their derivatives appear nowhere in the
equation� Normally� for PDEs to represent a physical conservation statement� this means
that the divergence of a physical quantity can be identi�ed in the equation� For example�
the conservation form of the one�dimensional heat equation for a substance whose density�
�� speci�c heat� c� and thermal conductivity K� all vary with position is

�c
�u

�t
�

�

�x

�
K
�u

�x

�

whereas a nonconservative form would be

�c
�u

�t
�

�K

�x

�u

�x
�K

��u

�x�
�

In the conservative form� the right hand side can be identi�ed as the negative of the diver�
gence of the heat �ux �see Chapter ���

Consider a discontinuous initial condition� then the equation must be taken in the integral
form �	������
�� We seek a solution u and a curve x � xs�t� across which u may have a jump�
Suppose that the left and right limits are

limx�xs�t	� u�x� t� � u�
limx�xs�t	� u�x� t� � ur

�	��������

and de�ne the jump across xs�t� by

�u� � ur � u�� �	��������


	



Let ��� �� be any interval containing xs�t� at time t� Then

d

dt

Z �

�
u�x� t�dx � � �q�u��� t��� q�u��� t��� � �	��������

However the left hand side is

d

dt

Z xs�t	�

�
udx�

d

dt

Z �

xs�t	�
udx �

Z xs�t	�

�
utdx�

Z �

xs�t	�
utdx � u�

dxs
dt
� ur

dxs
dt

� �	��������

Recall the rule to dierentiate a de�nite integral when one of the endpoints depends on the
variable of dierentiation� i�e�

d

dt

Z ��t	

a
u�x� t�dx �

Z ��t	

a
ut�x� t�dx� u���t�� t�

d�

dt
�

Since ut is bounded in each of the intervals separately� the integrals on the right hand side
of �	�������� tend to zero as �� x�s and � � x
s � Thus

�u�
dxs
dt

� �q��

This gives the characteristic equation for shocks

dxs
dt

�
�q�

�u�
� �	��������

Going back to the example �	���������	������� we �nd from �	������� that

q �
�

�
u�

and from �	�������
u� � ��

ur � ��

Therefore
dxs
dt

�
�
�
� �� � �

�
� ��

�� �
�
�� � �

�

�� �
	

�

xs��� � � �where discontinuity starts��

The solution is then

xs �
	

�
t � �� �	��������

We can now sketch this along with the other characteristics in �gure ��� Any characteristic
reaching the one given by �	�������� will stop there� The solution is given in �gure ���


�
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Figure ��� Shock characteristic for Example 
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Problems

�� Consider Burgers� equation

��

�t
� umax

�
�� ��

�max

�
��

�x
� �

���

�x�

Suppose that a solution exists as a density wave moving without change of shape at a velocity
V � ��x� t� � f�x� V t��

a� What ordinary dierential equation is satis�ed by f

b� Show that the velocity of wave propagation� V � is the same as the shock velocity
separating � � �� from � � �� �occuring if � � ���

�� Solve
��

�t
� ��

��

�x
� �

subject to

��x� �� �

�
� x � �
	 x � �

	� Solve
�u

�t
� �u

�u

�x
� �

subject to

u�x� �� �

�
	 x � �
� x � �

�� Solve the above equation subject to

u�x� �� �

�
� x � ��
	 x � ��


� Solve the quasilinear equation
�u

�t
� u

�u

�x
� �

subject to

u�x� �� �

�
� x � �
	 x � �

�� Solve the quasilinear equation
�u

�t
� u

�u

�x
� �


�



subject to

u�x� �� �

��
�

� x � �
x � � x � �
� � � x

�� Solve the inviscid Burgers� equation

ut � uux � �

u �x� �� �

��
�

� for x � �

� for � � x � �

� for x � �

Note that two shocks start at t � � � and eventually intersect to create a third shock�
Find the solution for all time �analytically�� and graphically display your solution� labeling
all appropriate bounding curves�


�



��� Second Order Wave Equation

In this section we show how the method of characteristics is applied to solve the second order
wave equation describing a vibrating string� The equation is

utt � c�uxx � �� c � constant� �	�	���

For the rest of this chapter the unknown u�x� t� describes the displacement from rest of every
point x on the string at time t� We have shown in section ��	 that the general solution is

u�x� t� � F �x� ct� �G�x� ct�� �	�	���

����� In�nite Domain

The problem is to �nd the solution of �	�	��� subject to the initial conditions

u�x� �� � f�x� �� � x �� �	�	�����

ut�x� �� � g�x� �� � x ��� �	�	�����

These conditions will specify the arbitrary functions F�G� Combining the conditions with
�	�	���� we have

F �x� �G�x� � f�x� �	�	���	�

�cdF
dx

� c
dG

dx
� g�x�� �	�	�����

These are two equations for the two arbitrary functions F and G� In order to solve the
system� we �rst integrate �	�	������ thus

�F �x� �G�x� �
�

c

Z x

�
g���d�� �	�	���
�

Therefore� the solution of �	�	���	� and �	�	���
� is

F �x� �
�

�
f�x�� �

�c

Z x

�
g���d�� �	�	�����

G�x� �
�

�
f�x� �

�

�c

Z x

�
g���d�� �	�	�����

Combining these expressions with �	�	���� we have

u�x� t� �
f�x� ct� � f�x� ct�

�
�

�

�c

Z x
ct

x�ct
g���d�� �	�	�����

This is d�Alembert�s solution to �	�	��� subject to �	�	�������	�	������

Note that the solution u at a point �x��t�� depends on f at the points �x� � ct���� and
�x�� ct����� and on the values of g on the interval �x�� ct� � x� � ct��� This interval is called


�



domain of dependence� In �gure ��� we see that the domain of dependence is obtained by
drawing the two characteristics

x� ct � x� � ct�

x � ct � x� � ct�

through the point �x�� t��� This behavior is to be expected because the eects of the initial
data propagate at the �nite speed c� Thus the only part of the initial data that can in�uence
the solution at x� at time t� must be within ct� units of x�� This is precisely the data given
in the interval �x� � ct� � x� � ct���
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Figure ��� Domain of dependence

The functions f�x�� g�x� describing the initial position and speed of the string are de�ned
for all x� The initial disturbance f�x� at a point x� will propagate at speed c whereas the
eect of the initial velocity g�x� propagates at all speeds up to c� This in�nite sector ��gure
��� is called the domain of in�uence of x��

The solution �	�	��� represents a sum of two waves� one is travelling at a speed c to the
right �F �x� ct�� and the other is travelling to the left at the same speed�


�
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Figure ��� Domain of in�uence
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Problems

�� Suppose that
u�x� t� � F �x� ct��

Evaluate

a�
�u

�t
�x� ��

b�
�u

�x
��� t�

�� The general solution of the one dimensional wave equation

utt � �uxx � �

is given by
u�x� t� � F �x� �t� �G�x� �t��

Find the solution subject to the initial conditions

u�x� �� � cos x �� � x ���

ut�x� �� � � �� � x ���

	� In section 	��� we suggest that the wave equation can be written as a system of two �rst
order PDEs� Show how to solve

utt � c�uxx � �

using that idea�

��



����� Semi�in�nite String

The problem is to solve the one�dimensional wave equation

utt � c�uxx � �� � � x ��� �	�	�����

subject to the initial conditions

u�x� �� � f�x�� � � x ��� �	�	�����

ut�x� �� � g�x�� � � x ��� �	�	���	�

and the boundary condition

u��� t� � h�t�� � � t� �	�	�����

Note that f�x� and g�x� are de�ned only for nonnegative x� Therefore� the solution �	�	�����
holds only if the arguments of f�x� are nonnegative� i�e�

x� ct 
 �
x � ct 
 �

�	�	���
�

As can be seen in �gure ��� the �rst quadrant must be divided to two sectors by the charac�
teristic x� ct � �� In the lower sector I� the solution �	�	����� holds� In the other sector� one
should note that a characteristic x� ct � K will cross the negative x axis and the positive
t axis�
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Figure ��� The characteristic x� ct � � divides the �rst quadrant

The solution at point �x�� t�� must depend on the boundary condition h�t�� We will show
how the dependence presents itself�

For x� ct � �� we proceed as follows�

��



 Combine �	�	����� with the general solution �	�	��� at x � �

h�t� � F ��ct� �G�ct� �	�	�����

 Since x� ct � � and since F is evaluated at this negative value� we use �	�	�����

F ��ct� � h�t��G�ct� �	�	�����

 Now let
z � �ct � �

then
F �z� � h��z

c
��G��z�� �	�	�����

So F for negative values is computed by �	�	����� which requires G at positive values�
In particular� we can take x� ct as z� to get

F �x� ct� � h��x� ct

c
��G�ct� x�� �	�	�����

 Now combine �	�	����� with the formula �	�	����� for G

F �x� ct� � h�t� x

c
��



�

�
f�ct� x� �

�

�c

Z ct�x

�
g���d�

�

 The solution in sector II is then

u�x� t� � h


t� x

c

�
� �

�
f�ct� x�� �

�c

Z ct�x

�
g���d� �

�

�
f�x � ct� �

�

�c

Z x
ct

�
g���d�

u�x� t� �

��
�

f�x� ct� � f�x� ct�

�
�

�

�c

Z x
ct

x�ct
g���d� x� ct 
 �

h


t� x

c

�
�
f�x� ct�� f�ct� x�

�
�

�

�c

Z x
ct

ct�x
g���d� x� ct � �

�	�	������

Note that the solution in sector II requires the knowledge of f�x� at point B �see Figure
�	� which is the image of A about the t axis� The line BD is a characteristic �parallel
to PC�

x � ct � K�

Therefore the solution at �x�� t�� is a combination of a wave moving on the characteristic
CP and one moving on BD and re�ected by the wall at x � � to arrive at P along a
characteristic

x� ct � x� � ct��

�	
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Figure �	� The solution at P

We now introduce several de�nitions to help us show that d�Alembert�s solution �	�	�����
holds in other cases�

De�nition �� A function f�x� is called an even function if

f��x� � f�x��

De�nition �� A function f�x� is called an odd function if

f��x� � �f�x��

Note that some functions are neither�
Examples

�� f�x� � x� is an even function�
�� f�x� � x� is an odd function�
	� f�x� � x� x� is neither odd nor even�

De�nition ��� A function f�x� is called a periodic function of period p if

f�x � p� � f�x� for all x�

The smallest such real number p is called the fundamental period�
Remark� If the boundary condition �	�	����� is

u��� t� � ��

then the solution for the semi�in�nite interval is the same as that for the in�nite interval
with f�x� and g�x� being extended as odd functions for x � �� Since if f and g are odd
functions then

f��z� � �f�z��
g��z� � �g�z�� �	�	������

��



The solution for x� ct is now

u�x� t� �
f�x� ct�� f���x� ct��

�
�

�

�c


Z �

ct�x
g���d� �

Z x
ct

�
g���d�

�
� �	�	������

But if we let � � �� then

Z �

ct�x
g���d� �

Z �

x�ct
g������d��

�
Z �

x�ct
�g�����d�� �

Z �

x�ct
g���d��

Now combine this integral with the last term in �	�	������ to have

u�x� t� �
f�x � ct� � f�x� ct�

�
�

�

�c

Z x
ct

x�ct
g���d�

which is exactly the same formula as for x�ct 
 �� Therefore we have shown that for a semi�
in�nite string with �xed ends� one can use d�Alembert�s solution �	�	����� after extending
f�x� and g�x� as odd functions for x � ��

What happens if the boundary condition is

ux��� t� � ��

We claim that one has to extend f�x�� g�x� as even functions and then use �	�	������ The
details will be given in the next section�

����� Semi In�nite String with a Free End

In this section we show how to solve the wave equation

utt � c�uxx � �� � � x ��� �	�	�	���

subject to
u�x� �� � f�x�� �	�	�	���

ut�x� �� � g�x�� �	�	�	�	�

ux��� t� � �� �	�	�	���

Clearly� the general solution for x� ct 
 � is the same as before� i�e� given by �	�	������ For
x � ct � �� we proceed in a similar fashion as last section� Using the boundary condition
�	�	�	���

� � ux��� t� �
dF �x� ct�

dx

����
x��

�
dG�x� ct�

dx

����
x��

� F ���ct� �G��ct��

Therefore
F ���ct� � �G��ct�� �	�	�	�
�

�




Let z � �ct � � and integrate over ��� z�

F �z�� F ��� � G��z��G���� �	�	�	���

From �	�	�������	�	����� we have

F ��� � G��� �
�

�
f���� �	�	�	���

Replacing z by x� ct � �� we have

F �x� ct� � G���x� ct���

or

F �x� ct� �
�

�
f�ct� x� �

�

�c

Z ct�x

�
g���d�� �	�	�	���

To summarize� the solution is

u�x� t� �

��
�

f�x� ct� � f�x� ct�

�
�

�

�c

Z x
ct

x�ct
g���d�� x 
 ct

f�x� ct� � f�ct� x�

�
�

�

�c

Z x
ct

�
g���d� �

�

�c

Z ct�x

�
g���d�� x � ct�

�	�	�	���

Remark� If f�x� and g�x� are extended for x � � as even functions then

f�ct� x� � f���x� ct�� � f�x� ct�

and Z ct�x

�
g���d� �

Z x�ct

�
g�����d�� �

Z �

x�ct
g���d�

where � � ���
Thus the integrals can be combined to one to give

�

�c

Z x
ct

x�ct
g���d��

Therefore with this extension of f�x� and g�x� we can write the solution in the form �	�	������

��



Problems

�� Solve by the method of characteristics

��u

�t�
� c�

��u

�x�
� �� x � �

subject to
u�x� �� � ��

�u

�t
�x� �� � ��

u��� t� � h�t��

�� Solve
��u

�t�
� c�

��u

�x�
� �� x � �

subject to
u�x� �� � sin x� x � �

�u

�t
�x� �� � �� x � �

u��� t� � e�t� t � ��

	� a� Solve
��u

�t�
� c�

��u

�x�
� �� � � x ��

subject to

u�x� �� �

��
�

� � � x � �
� � � x � 	
� 	 � x

�u

�t
�x� �� � ��

�u

�x
��� t� � ��

b� Suppose u is continuous at x � t � �� sketch the solution at various times�

�� Solve
��u

�t�
� c�

��u

�x�
� �� x � �� t � �

subject to
u�x� �� � ��

�u

�t
�x� �� � ��

�u

�x
��� t� � h�t��


� Give the domain of in�uence in the case of semi�in�nite string�

��



����� Finite String

This problem is more complicated because of multiple re�ections� Consider the vibrations
of a string of length L�

utt � c�uxx � �� � � x � L� �	�	�����

subject to
u�x� �� � f�x�� �	�	�����

ut�x� �� � g�x�� �	�	���	�

u��� t� � �� �	�	�����

u�L� t� � �� �	�	���
�

From the previous section� we can write the solution in regions � and � �see �gure ���� i�e�
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Figure ��� Re�ected waves reaching a point in region 


u�x� t� is given by �	�	����� in region � and by �	�	������ with h � � in region �� The
solution in region 	 can be obtained in a similar fashion as �	�	������� but now use the
boundary condition �	�	���
��

In region 	� the boundary condition �	�	���
� becomes

u�L� t� � F �L� ct� �G�L � ct� � �� �	�	�����

Since L� ct 
 L� we solve for G

G�L� ct� � �F �L� ct��

��



Let
z � L � ct 
 L� �	�	�����

then
L� ct � �L� z � L�

Thus
G�z� � �F ��L� z� �	�	�����

or

G�x � ct� � �F ��L� x� ct� � ��

�
f��L� x� ct� �

�

�c

Z �L�x�ct

�
g���d�

and so adding F �x� ct� given by �	�	����� to the above we get the solution in region 	�

u�x� t� �
f�x� ct�� f��L� x� ct�

�
�

�

�c

Z x�ct

�
g���d� �

�

�c

Z �L�x�ct

�
g���d��

In other regions multiply re�ected waves give the solution� �See �gure ��� showing doubly
re�ected waves reaching points in region 
��

As we remarked earlier� the boundary condition �	�	����� essentially say that the initial
conditions were extended as odd functions for x � � �in this case for �L � x � ��� The other
boundary condition means that the initial conditions are extended again as odd functions
to the interval �L� �L�� which is the same as saying that the initial conditions on the interval
��L� L� are now extended periodically everywhere� Once the functions are extended to the
real line� one can use �	�	����� as a solution� A word of caution� this is true only when the
boundary conditions are given by �	�	�������	�	���
��
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� Parallelogram rule
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����� Parallelogram Rule

If the four points A�B�C� and D form the vertices of a parallelogram whose sides are all
segments of characteristic curves� �see �gure �
� then the sums of the values of u at opposite
vertices are equal� i�e�

u�A� � u�C� � u�B� � u�D�� �	�	�
���

This rule is useful in solving a problem with both initial and boundary conditions�
In region R� �see �gure ��� the solution is de�ned by d�Alembert�s formula� For A � �x� t�

in region R�� let us form the parallelogram ABCD with B on the t�axis and C and D on
the characterisrtic curve from ��� ��� Thus

u�A� � �u�C� � u�B� � u�D� �	�	�
���
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Figure ��� Use of parallelogram rule to solve the �nite string case

u�B� is a known boundary value and the others are known from R�� We can do this for
any point A in R�� Similarly for R�� One can use the solutions in R�� R� to get the solution
in R� and so on� The limitation is that u must be given on the boundary� If the boundary
conditions are not of Dirichlet type� this rule is not helpful�
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SUMMARY
Linear�

ut � c�x� t�ux � S�u� x� t�

u�x���� �� � f�x����

Solve the characteristic equation
dx

dt
� c�x� t�

x��� � x�

then solve
du

dt
� S�u� x� t�

u�x���� �� � f�x���� on the characteristic curve

Quasilinear�
ut � c�u� x� t�ux � S�u� x� t�

u�x���� �� � f�x����

Solve the characteristic equation
dx

dt
� c�u� x� t�

x��� � x�

then solve
du

dt
� S�u� x� t�

u�x���� �� � f�x���� on the characteristic curve

fan�like characteristics
shock waves
Second order hyperbolic equations�

In�nite string

utt � c�uxx � � c � constant� �� � x ��

u�x� �� � f�x��

ut�x� �� � g�x��

u�x� t� �
f�x� ct� � f�x� ct�

�
�

�

�c

Z x
ct

x�ct
g���d��

��



Semi in�nite string

utt � c�uxx � � c � constant� � � x ��

u�x� �� � f�x��

ut�x� �� � g�x��

u��� t� � h�t�� � � t�

u�x� t� �

��
�

f�x� ct� � f�x� ct�

�
�

�

�c

Z x
ct

x�ct
g���d�� x� ct 
 ��

h


t� x

c

�
�
f�x� ct�� f�ct� x�

�
�

�

�c

Z x
ct

ct�x
g���d�� x� ct � ��

Semi in�nite string � free end

utt � c�uxx � � c � constant� � � x ���

u�x� �� � f�x��

ut�x� �� � g�x��

ux��� t� � h�t��

u�x� t� �

��
�

f�x� ct� � f�x� ct�

�
�

�

�c

Z x
ct

x�ct
g���d�� x 
 ct�

Z x�ct

�
h��z�c�dz � f�x� ct� � f�ct� x�

�
�

�

�c

Z x
ct

�
g���d� �

�

�c

Z ct�x

�
g���d�� x � ct�

��



� Separation of Variables�Homogeneous Equations

In this chapter we show that the process of separation of variables solves the one dimensional
heat equation subject to various homogeneous boundary conditions and solves Laplace�s
equation� All problems in this chapter are homogeneous� We will not be able to give the
solution without the knowledge of Fourier series� Therefore these problems will not be fully
solved until Chapter � after we discuss Fourier series�

��� Parabolic equation in one dimension

In this section we show how separation of variables is applied to solve a simple problem of
heat conduction in a bar whose ends are held at zero temperature�

ut � kuxx� �������

u��� t� � �� zero temperature on the left� �������

u�L� t� � �� zero temperature on the right� �����	�

u�x� �� � f�x�� given initial distribution of temperature� �������

Note that the equation must be linear and for the time being also homogeneous �no heat
sources or sinks�� The boundary conditions must also be linear and homogeneous� In Chapter
� we will show how inhomogeneous boundary conditions can be transferred to a source�sink
and then how to solve inhomogeneous partial dierential equations� The method there
requires the knowledge of eigenfunctions which are the solutions of the spatial parts of the
homogeneous problems with homogeneous boundary conditions�

The idea of separation of variables is to assume a solution of the form

u�x� t� � X�x�T �t�� �����
�

that is the solution can be written as a product of a function of x and a function of t�
Dierentiate �����
� and substitute in ������� to obtain

X�x� "T �t� � kX ���x�T �t�� �������

where prime denotes dierentiation with respect to x and dot denotes time derivative� In
order to separate the variables� we divide the equation by kX�x�T �t��

"T �t�

kT �t�
�

X ���x�
X�x�

� �������

The left hand side depends only on t and the right hand side only on x� If we �x one variable�
say t� and vary the other� then the left hand side cannot change �t is �xed� therefore the
right hand side cannot change� This means that each side is really a constant� We denote
that so called separation constant by ��� Now we have two ordinary dierential equations

X ���x� � ��X�x�� �������

�	



"T �t� � �k�T �t�� �������

Remark� This does NOT mean that the separation constant is negative�
The homogeneous boundary conditions can be used to provide boundary conditions for
�������� These are

X���T �t� � ��

X�L�T �t� � ��

Since T �t� cannot be zero �otherwise the solution u�x� t� � X�x�T �t� is zero�� then

X��� � �� ��������

X�L� � �� ��������

First we solve ������� subject to ������������������ This can be done by analyzing the following
	 cases� �We will see later that the separation constant � is real��

case �� � � ��
The solution of ������� is

X�x� � Ae
p
�x �Be�

p
�x� ��������

where � � �� � ��
Recall that one should try erx which leads to the characteristic equation r� � �� Using the
boundary conditions� we have two equations for the parameters A� B

A �B � �� ������	�

Ae
p
�L �Be�

p
�L � �� ��������

Solve ������	� for B and substitute in ��������

B � �A

A
�
e
p
�L � e�

p
�L
	
� ��

Note that
e
p
�L � e�

p
�L � � sinh

p
�L �� �

Therefore A � � which implies B � � and thus the solution is trivial �the zero solution��
Later we will see the use of writing the solution of �������� in one of the following four

forms
X�x� � Ae

p
�x �Be�

p
�x

� C cosh
p
�x�D sinh

p
�x

� E cosh
�p

�x � F
	

� G sinh
�p

�x �H
	
�

������
�

In �gure �� we have plotted the hyperbolic functions sinhx and cosh x� so one can see that
the hyperbolic sine vanishes only at one point and the hyperbolic cosine never vanishes�

case �� � � ��

��



cosh(x),sinh(x)

x

y

(0,1)

Figure ��� sinh x and cosh x

This leads to
X ���x� � �� ��������

X��� � ��

X�L� � ��

The ODE has a solution
X�x� � Ax �B� ��������

Using the boundary conditions
A � � �B � ��

A � L �B � ��

we have
B � ��

A � ��

and thus
X�x� � ��

which is the trivial solution �leads to u�x� t� � �� and thus of no interest�

case 	� � � ��
The solution in this case is

X�x� � A cos
p
�x �B sin

p
�x� ��������

�




The �rst boundary condition leads to

X��� � A � � �B � � � �

which implies
A � ��

Therefore� the second boundary condition �with A � �� becomes

B sin
p
�L � �� ��������

Clearly B �� � �otherwise the solution is trivial again�� therefore

sin
p
�L � ��

and thus p
�L � n�� n � �� �� � � � �since � � �� then n 
 ��

and

�n �


n�

L

��
� n � �� �� � � � ��������

These are called the eigenvalues� The solution �������� becomes

Xn�x� � Bn sin
n�

L
x� n � �� �� � � � ��������

The functions Xn are called eigenfunctions or modes� There is no need to carry the constants
Bn� since the eigenfunctions are unique only to a multiplicative scalar �i�e� if Xn is an
eigenfunction then KXn is also an eigenfunction��

The eigenvalues �n will be substituted in ������� before it is solved� therefore

"Tn�t� � �k


n�

L

��
Tn� ��������

The solution is

Tn�t� � e�k�
n�
L �

�
t� n � �� �� � � � ������	�

Combine �������� and ������	� with �����
�

un�x� t� � e�k�
n�
L �

�
t sin

n�

L
x� n � �� �� � � � ��������

Since the PDE is linear� the linear combination of all the solutions un�x� t� is also a solution

u�x� t� �
�X
n��

bne
�k�n�L �

�
t sin

n�

L
x� ������
�

This is known as the principle of superposition� As in power series solution of ODEs� we
have to prove that the in�nite series converges �see section 
�
�� This solution satis�es the
PDE and the boundary conditions� To �nd bn� we must use the initial condition and this
will be done after we learn Fourier series�

��



��� Other Homogeneous Boundary Conditions

If one has to solve the heat equation subject to one of the following sets of boundary condi�
tions

��
u��� t� � �� �������

ux�L� t� � �� �������

��
ux��� t� � �� �����	�

u�L� t� � �� �������

	�
ux��� t� � �� �����
�

ux�L� t� � �� �������

��
u��� t� � u�L� t�� �������

ux��� t� � ux�L� t�� �������

the procedure will be similar� In fact� ������� and ������� are unaected� In the �rst case�
��������������� will be

X��� � �� �������

X ��L� � �� ��������

It is left as an exercise to show that

�n �
�

n� �

�

�
�

L

��
� n � �� �� � � � ��������

Xn � sin


n� �

�

�
�

L
x� n � �� �� � � � ��������

The boundary conditions �����	��������� lead to

X ���� � �� ������	�

X�L� � �� ��������

and the eigenpairs are

�n �
�

n� �

�

�
�

L

��
� n � �� �� � � � ������
�

Xn � cos


n� �

�

�
�

L
x� n � �� �� � � � ��������

The third case leads to
X ���� � �� ��������

��



X ��L� � �� ��������

Here the eigenpairs are
�� � �� ��������

X� � �� ��������

�n �


n�

L

��
� n � �� �� � � � ��������

Xn � cos
n�

L
x� n � �� �� � � � ��������

The case of periodic boundary conditions require detailed solution�

case �� � � ��
The solution is given by ��������

X�x� � Ae
p
�x �Be�

p
�x� � � �� � ��

The boundary conditions ��������������� imply

A �B � Ae
p
�L �Be�

p
�L� ������	�

A
p
�� B

p
� � A

p
�e

p
�L �B

p
�e�

p
�L� ��������

This system can be written as

A
�
�� e

p
�L
	
�B

�
�� e�

p
�L
	
� �� ������
�

p
�A

�
�� e

p
�L
	
�
p
�B

�
�� � e�

p
�L
	
� �� ��������

This homogeneous system can have a solution only if the determinant of the coe�cient
matrix is zero� i�e� ����� �� e

p
�L �� e�

p
�L�

�� e
p
�L
	p

�
�
�� � e�

p
�L
	p

�

����� � ��

Evaluating the determinant� we get

�
p
�
�
e
p
�L � e�

p
�L � �

	
� ��

which is not possible for � � ��

case �� � � ��
The solution is given by ��������� To use the boundary conditions� we have to dierentiate

X�x��
X ��x� � A� ��������

The conditions ������� and ������� correspondingly imply

A � A�

��



B � AL�B� � AL � � � A � ��

Thus for the eigenvalue
�� � �� ��������

the eigenfunction is
X��x� � �� ��������

case 	� � � ��
The solution is given by

X�x� � A cos
p
�x �B sin

p
�x� �����	��

The boundary conditions give the following equations for A�B�

A � A cos
p
�L�B sin

p
�L�

p
�B � �

p
�A sin

p
�L �

p
�B cos

p
�L�

or
A
�
�� cos

p
�L
	
� B sin

p
�L � �� �����	��

A
p
� sin

p
�L�B

p
�
�
�� cos

p
�L
	
� �� �����	��

The determinant of the coe�cient matrix������
�� cos

p
�L � sin

p
�Lp

� sin
p
�L

p
�
�
�� cos

p
�L
	
������ � ��

or p
�
�
�� cos

p
�L
	�

�
p
� sin�

p
�L � ��

Expanding and using some trigonometric identities�

�
p
�
�
�� cos

p
�L
	
� ��

or
�� cos

p
�L � �� �����		�

Thus �����	��������	�� become

�B sin
p
�L � ��

A
p
� sin

p
�L � ��

which imply
sin
p
�L � �� �����	��

Thus the eigenvalues �n must satisfy �����		� and �����	��� that is

�n �


�n�

L

��
� n � �� �� � � � �����	
�

��



Condition �����	�� causes the system to be true for any A�B� therefore the eigenfunctions
are

Xn�x� �

��
�

cos �n	
L
x n � �� �� � � �

sin �n	
L
x n � �� �� � � �

�����	��

In summary� for periodic boundary conditions

�� � �� �����	��

X��x� � �� �����	��

�n �


�n�

L

��
� n � �� �� � � � �����	��

Xn�x� �

��
�

cos �n	
L
x n � �� �� � � �

sin �n	
L
x n � �� �� � � �

��������

Remark� The ODE for X is the same even when we separate the variables for the wave
equation� For Laplace�s equation� we treat either the x or the y as the marching variable
�depending on the boundary conditions given��

Example�
uxx � uyy � � � � x� y � � ��������

u�x� �� � u� � constant ��������

u�x� �� � � ������	�

u��� y� � u��� y� � �� ��������

This leads to
X �� � �X � � ������
�

X��� � X��� � � ��������

and
Y �� � �Y � � ��������

Y ��� � �� ��������

The eigenvalues and eigenfunctions are

Xn � sinn�x� n � �� �� � � � ��������

�n � �n���� n � �� �� � � � �����
��

The solution for the y equation is then

Yn � sinhn��y � �� �����
��

��



and the solution of the problem is

u�x� y� �
�X
n��

�n sinn�x sinhn��y � �� �����
��

and the parameters �n can be obtained from the Fourier expansion of the nonzero boundary
condition� i�e�

�n �
�u�
n�

����n � �

sinhn�
� �����
	�

��



Problems

�� Consider the dierential equation

X ���x� � �X�x� � �

Determine the eigenvalues � �assumed real� subject to

a� X��� � X��� � �

b� X ���� � X ��L� � �

c� X��� � X ��L� � �

d� X ���� � X�L� � �

e� X��� � � and X ��L� �X�L� � �

Analyze the cases � � �� � � � and � � ��

��



��� Eigenvalues and Eigenfunctions

As we have seen in the previous sections� the solution of the X�equation on a �nite interval
subject to homogeneous boundary conditions� results in a sequence of eigenvalues and corre�
sponding eigenfunctions� Eigenfunctions are said to describe natural vibrations and standing
waves� X� is the fundamental and Xi� i � � are the harmonics� The eigenvalues are the
natural frequencies of vibration� These frequencies do not depend on the initial conditions�
This means that the frequencies of the natural vibrations are independent of the method to
excite them� They characterize the properties of the vibrating system itself and are deter�
mined by the material constants of the system� geometrical factors and the conditions on
the boundary�

The eigenfunction Xn speci�es the pro�le of the standing wave� The points at which an
eigenfunction vanishes are called  nodal points! �nodal lines in two dimensions�� The nodal
lines are the curves along which the membrane at rest during eigenvibration� For a square
membrane of side � the eigenfunction �as can be found in Chapter �� are sinnx sinmy and
the nodal lines are lines parallel to the coordinate axes� However� in the case of multiple
eigenvalues� many other nodal lines occur�

Some boundary conditions may not be exclusive enough to result in a unique solution
�up to a multiplicative constant� for each eigenvalue� In case of a double eigenvalue� any
pair of independent solutions can be used to express the most general eigenfunction for
this eigenvalue� Usually� it is best to choose the two solutions so they are orthogonal to
each other� This is necessary for the completeness property of the eigenfunctions� This can
be done by adding certain symmetry requirement over and above the boundary conditions�
which pick either one or the other� For example� in the case of periodic boundary conditions�
each positive eigenvalue has two eigenfunctions� one is even and the other is odd� Thus the
symmetry allows us to choose� If symmetry is not imposed then both functions must be
taken�

The eigenfunctions� as we proved in Chapter � of Neta� form a complete set which is the
basis for the method of eigenfunction expansion described in Chapter 
 for the solution of
inhomogeneous problems �inhomogeneity in the equation or the boundary conditions��

�	



SUMMARY

X �� � �X � �

Boundary conditions Eigenvalues �n Eigenfunctions Xn

X��� � X�L� � �
�
n	
L

	�
sin n	

L
x n � �� �� � � �

X��� � X ��L� � �
�
�n� �

�
		

L

��
sin

�n� �
�
		

L
x n � �� �� � � �

X ���� � X�L� � �
�
�n� �

�
		

L

��
cos

�n� �
�
		

L
x n � �� �� � � �

X ���� � X ��L� � �
�
n	
L

	�
cos n	

L
x n � �� �� �� � � �

X��� � X�L�� X ���� � X ��L�
�
�n	
L

	�
sin �n	

L
x n � �� �� � � �

cos �n	
L
x n � �� �� �� � � �

��



� Fourier Series

In this chapter we discuss Fourier series and the application to the solution of PDEs by
the method of separation of variables� In the last section� we return to the solution of
the problems in Chapter � and also show how to solve Laplace�s equation� We discuss the
eigenvalues and eigenfunctions of the Laplacian� The application of these eigenpairs to the
solution of the heat and wave equations in bounded domains will follow in Chapter � �for
higher dimensions and a variety of coordinate systems� and Chapter � �for nonhomogeneous
problems��

��� Introduction

As we have seen in the previous chapter� the method of separation of variables requires
the ability of presenting the initial condition in a Fourier series� Later we will �nd that
generalized Fourier series are necessary� In this chapter we will discuss the Fourier series
expansion of f�x�� i�e�

f�x� 	 a�
�

�
�X
n��



an cos

n�

L
x� bn sin

n�

L
x
�
� �
�����

We will discuss how the coe�cients are computed� the conditions for convergence of the
series� and the conditions under which the series can be dierentiated or integrated term by
term�

De�nition ��� A function f�x� is piecewise continuous in �a� b� if there exists a �nite number
of points a � x� � x� � � � � � xn � b� such that f is continuous in each open interval
�xj� xj
�� and the one sided limits f�xj
� and f�xj
��� exist for all j � n� ��

Examples
�� f�x� � x� is continuous on �a� b��

��

f�x� �

�
x � � x � �
x� � x � � x � �

The function is piecewise continuous but not continuous because of the point x � ��

	� f�x� � �
x

� � � x � �� The function is not piecewise continuous because the one
sided limit at x � � does not exist�

De�nition ��� A function f�x� is piecewise smooth if f�x� and f ��x� are piecewise continuous�

De�nition �	� A function f�x� is periodic if f�x� is piecewise continuous and f�x�p� � f�x�
for some real positive number p and all x� The number p is called a period� The smallest
period is called the fundamental period�

Examples

�� f�x� � sinx is periodic of period ���

�




�� f�x� � cos x is periodic of period ���

Note� If fi�x�� i � �� �� � � � � n are all periodic of the same period p then the linear
combination of these functions

nX
i��

cifi�x�

is also periodic of period p�

��� Orthogonality

Recall that two vectors a and b in Rn are called orthogonal vectors if

a �b �
nX
i��

aibi � ��

We would like to extend this de�nition to functions� Let f�x� and g�x� be two functions
de�ned on the interval ��� ��� If we sample the two functions at the same points xi� i �

�� �� � � � � n then the vectors F and G� having components f�xi� and g�xi� correspondingly�
are orthogonal if

nX
i��

f�xi�g�xi� � ��

If we let n to increase to in�nity then we get an in�nite sum which is proportional to

Z �

�
f�x�g�x�dx�

Therefore� we de�ne orthogonality as follows�

De�nition ��� Two functions f�x� and g�x� are called orthogonal on the interval ��� �� with
respect to the weight function w�x� � � if

Z �

�
w�x�f�x�g�x�dx � ��

Example �
The functions sinx and cos x are orthogonal on ���� �� with respect to w�x� � ��

Z 	

�	
sinx cos xdx �

�

�

Z 	

�	
sin �xdx � ��

�
cos �xj	�	 � ��

�
�

�

�
� ��

De�nition �
� A set of functions f�n�x�g is called orthogonal system with respect to w�x�
on ��� �� if Z �

�
�n�x��m�x�w�x�dx � �� for m �� n� �
�����

��



De�nition ��� The norm of a function f�x� with respect to w�x� on the interval ��� �� is
de�ned by

kfk �
�Z �

�
w�x�f ��x�dx

����

�
�����

De�nition ��� The set f�n�x�g is called orthonormal system if it is an orthogonal system
and if

k�nk � �� �
���	�

Examples

��
�
sin

n�

L
x
�
is an orthogonal system with respect to w�x� � � on ��L� L��

For n �� m

Z L

�L
sin

n�

L
x sin

m�

L
xdx

�
Z L

�L

�
��

�
cos

�n�m��

L
x �

�

�
cos

�n�m��

L
x

�
dx

�

�
��

�

L

�n�m��
sin

�n �m��

L
x�

�

�

L

�n�m��
sin

�n�m��

L
x

� ����L�L� �

��
�
cos

n�

L
x
�
is also an orthogonal system on the same interval� It is easy to show that for

n �� m

Z L

�L
cos

n�

L
x cos

m�

L
xdx

�
Z L

�L

�
�

�
cos

�n �m��

L
x�

�

�
cos

�n�m��

L
x

�
dx

�

�
�

�

L

�n �m��
sin

�n�m��

L
x �

�

�

L

�n�m��
sin

�n�m��

L
x

�
jL�L � �

	� The set f�� cos x� sin x� cos �x� sin �x� � � � � cos nx� sinnx� � � �g is an orthogonal system on
���� �� with respect to the weight function w�x� � ��

We have shown already thatZ 	

�	
sinnx sinmxdx � � for n �� m �
�����

Z 	

�	
cosnx cosmxdx � � for n �� m� �
���
�

��



The only thing left to show is thereforeZ 	

�	
� � sinnxdx � � �
�����

Z 	

�	
� � cosnxdx � � �
�����

and Z 	

�	
sinnx cosmxdx � � for any n�m� �
�����

Note that Z 	

�	
sinnxdx � �cosnx

n
j	�	 � � �

n
�cosn� � cos��n��� � �

since
cosn� � cos��n�� � ����n� �
�����

In a similar fashion we demonstrate �
������ This time the antiderivative
�

n
sinnx vanishes

at both ends�
To show �
����� we consider �rst the case n � m� Thus

Z 	

�	
sinnx cos nxdx �

�

�

Z 	

�	
sin �nxdx � � �

�n
cos �nxj	�	 � �

For n �� m� we can use the trigonometric identity

sin ax cos bx �
�

�
�sin�a � b�x � sin�a� b�x� � �
������

Integrating each of these terms gives zero as in �
������ Therefore the system is orthogonal�

��� Computation of Coe�cients

Suppose that f�x� can be expanded in Fourier series

f�x� 	 a�
�

�
�X
k��

�
ak cos

k�

L
x � bk sin

k�

L
x

�
� �
�	���

The in�nite series may or may not converge� Even if the series converges� it may not give
the value of f�x� at some points� The question of convergence will be left for later� In this
section we just give the formulae used to compute the coe�cients ak� bk�

a� �
�

L

Z L

�L
f�x�dx� �
�	���

ak �
�

L

Z L

�L
f�x� cos

k�

L
xdx for k � �� �� � � � �
�	�	�

��



bk �
�

L

Z L

�L
f�x� sin

k�

L
xdx for k � �� �� � � � �
�	���

Notice that for k � � �
�	�	� gives the same value as a� in �
�	���� This is the case only if

one takes
a�
�

as the �rst term in �
�	���� otherwise the constant term is

�

�L

Z L

�L
f�x�dx� �
�	�
�

The factor L in �
�	�	���
�	��� is exactly the square of the norm of the functions sin
k�

L
x and

cos
k�

L
x� In general� one should write the coe�cients as follows�

ak �

Z L

�L
f�x� cos

k�

L
xdxZ L

�L
cos�

k�

L
xdx

� for k � �� �� � � � �
�	���

bk �

Z L

�L
f�x� sin

k�

L
xdxZ L

�L
sin�

k�

L
xdx

� for k � �� �� � � � �
�	���

These two formulae will be very helpful when we discuss generalized Fourier series�

Example �
Find the Fourier series expansion of

f�x� � x on ��L� L�

ak �
�

L

Z L

�L
x cos

k�

L
xdx

�
�

L

�
L

k�
x sin

k�

L
x�



L

k�

��
cos

k�

L
x

� ����L�L
The �rst term vanishes at both ends and we have

�
�

L



L

k�

��
�cos k� � cos��k��� � ��

bk �
�

L

Z L

�L
x sin

k�

L
xdx

�
�

L

�
� L

k�
x cos

k�

L
x�



L

k�

��

sin
k�

L
x

� ����L�L�
Now the second term vanishes at both ends and thus

bk � � �

k�
�L cos k� � ��L� cos��k��� � ��L

k�
cos k� � ��L

k�
����k � �L

k�
����k
��

��
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Figure ��� Graph of f�x� � x and the N th partial sums for N � �� 
� ��� ��

Therefore the Fourier series is

x 	
�X
k��

�L

k�
����k
� sin

k�

L
x� �
�	���

In �gure �� we graphed the function f�x� � x and theN th partial sum forN � �� 
� ��� ���
Notice that the partial sums converge to f�x� except at the endpoints where we observe the
well known Gibbs phenomenon� �The discontinuity produces spurious oscillations in the
solution��

Example 	
Find the Fourier coe�cients of the expansion of

f�x� �

� �� for � L � x � �
� for � � x � L

�
�	���

ak �
�

L

Z �

�L
���� cos k�

L
xdx �

�

L

Z L

�
� � cos k�

L
xdx

� � �

L

L

k�
sin

k�

L
xj��L �

�

L

L

k�
sin

k�

L
xjL� � ��

a� �
�

L

Z �

�L
����dx�

�

L

Z L

�
�dx

� � �

L
xj��L �

�

L
xjL� �

�

L
��L� � �

L
� L � ��

��
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Figure ��� Graph of f�x� given in Example 	 and the N th partial sums for N � �� 
� ��� ��

bk �
�

L

Z �

�L
���� sin k�

L
xdx �

�

L

Z L

�
� � sin k�

L
xdx

�
�

L
����



� L

k�

�
cos

k�

L
xj��L �

�

L



� L

k�

�
cos

k�

L
xjL�

�
�

k�
��� cos��k���� �

k�
�cos k� � ��

�
�

k�

h
�� ����k

i
�

Therefore the Fourier series is

f�x� 	
�X
k��

�

k�

h
�� ����k

i
sin

k�

L
x� �
�	����

The graphs of f�x� and the N th partial sums �for various values of N� are given in �gure ���

In the last two examples� we have seen that ak � �� Next� we give an example where all
the coe�cients are nonzero�

Example �

f�x� �

�
�
L
x � � �L � x � �

x � � x � L
�
�	����

��
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Figure 	�� Graph of f�x� given in Example �

a� �
�

L

Z �

�L



�

L
x � �

�
dx�

�

L

Z L

�
xdx

�
�

L�

x�

�
j��L �

�

L
xj��L �

�

L

x�

�
jL�

� ��

�
� � �

L

�
�

L� �

�
�

ak �
�

L

Z �

�L



�

L
x� �

�
cos

k�

L
xdx �

�

L

Z L

�
x cos

k�

L
xdx

�
�

L�

�
L

k�
x sin

k�

L
x�



L

k�

��

cos
k�

L
x
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�
�

L

L

k�
sin

k�

L
xj��L �

�

L

�
L

k�
x sin

k�

L
x�
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L
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L
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�
�� L

�k���
� �� L

�k���
����k � �� L

�k���

�
�� ����k
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Figure 	�� Graph of f�x� given by example � �L � �� and the N th partial sums for N �
�� 
� ��� ��� Notice that for L � � all cosine terms and odd sine terms vanish� thus the �rst
term is the constant �


bk �
�

L

Z �

�L



�

L
x � �

�
sin

k�

L
xdx�

�

L

Z L

�
x sin

k�

L
xdx

�
�

L�

�
� L

k�
x cos

k�

L
x�



L

k�

��
sin

k�

L
x

� ������L
�
�

L

L

k�
�� cos

k�

L
x�j��L �

�

L

�
� L

k�
x cos

k�

L
x�



L

k�

��
sin

k�

L
x

� ����L
�

�
�

L�

L

k�
��L� cos k� � �

k�
�

�

k�
cos k� � L

k�
cos k�

� � �

k�

�
� � ����kL

	
�

therefore the Fourier series is

f�x� �
L � �

�
�

�X
k��

�
�� L

�k���

h
�� ����k

i
cos

k�

L
x� �

k�

h
� � ����kL

i
sin

k�

L
x

�

The sketches of f�x� and the N th partial sums are given in �gures 	��		 for various values
of L�
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Problems

�� For the following functions� sketch the Fourier series of f�x� on the interval ��L� L��
Compare f�x� to its Fourier series

a� f�x� � �

b� f�x� � x�

c� f�x� � ex

d�

f�x� �

�
�
�
x x � �

	x x � �

e�

f�x� �

��
�

� x � L
�

x� x � L
�

�� Sketch the Fourier series of f�x� on the interval ��L� L� and evaluate the Fourier coe��
cients for each

a� f�x� � x

b� f�x� � sin 	
L
x

c�

f�x� �

��
�

� jxj � L
�

� jxj � L
�

	� Show that the Fourier series operation is linear� i�e� the Fourier series of �f�x� � �g�x�
is the sum of the Fourier series of f�x� and g�x� multiplied by the corresponding constant�

�




��� Relationship to Least Squares

In this section we show that the Fourier series expansion of f�x� gives the best approximation
of f�x� in the sense of least squares� That is� if one minimizes the squares of dierences
between f�x� and the nth partial sum of the series

a�
�

�
�X
k��

�
ak cos

k�

L
x� bk sin

k�

L
x

�
�
�����

then the coe�cients a�� ak and bk are exactly the Fourier coe�cients given by �
�	�����
�	����
Let I�a�� a�� � � � � an� b�� b�� � � � � bn� be de�ned as the  sum! of the squares of the dierences�

i�e�

I �
Z L

�L
�f�x�� sn�x��

� dx �
�����

where sn�x� is the n
th partial sum

sn�x� �
a�
�

�
nX

k��

�
ak cos

k�

L
x� bk sin

k�

L
x

�
� �
���	�

In order to minimize the integral I� we have to set to zero each of the �rst partial derivatives�

�I

�a�
� �� �
�����

�I

�aj
� �� j � �� �� � � � � n �
���
�

�I

�bj
� �� j � �� �� � � � � n� �
�����

Dierentiating the integral we �nd

�I

�a�
�

Z L

�L
� �f�x�� sn�x��

�

�a�
�f�x�� sn�x�� dx

� ��
Z L

�L
�f�x�� sn�x��

�

�
dx

� �
Z L

�L

�
f�x�� a�

�
�

nX
k��

�
ak cos

k�

L
x� bk sin

k�

L
x

��
dx

�
�����

Using the orthogonality of the function � to all cos
k�

L
x and sin

k�

L
x we have

�I

�a�
� �

Z L

�L
f�x�dx�

a�
�
�L� �
�����

Combining �
����� and �
����� we have

a� �
�

L

Z L

�L
f�x�dx

��



which is �
�	����
If we dierentiate the integral with respect to aj for some j� then

�I

�aj
�

Z L

�L
� �f�x�� sn�x��

�

�aj

�
f�x�� a�

�
�

nX
k��

�
ak cos

k�

L
x� bk sin

k�

L
x

��
dx

� �
Z L

�L
�f�x�� sn�x��



� cos

j�

L
x
�
dx

�
�����

Now we use the orthogonality of cos
j�

L
x to get

� �
�I

�aj
� ��

Z L

�L

�
f�x�� aj cos

j�

L
x
�
cos

j�

L
xdx�

Therefore

�
Z L

�L
aj cos

� j�

L
xdx � �

Z L

�L
f�x� cos

j�

L
xdx�

Solving for aj yields �
�	����
Similarly

�I

�bj
� �

will lead to Z L

�L
bj sin

� j�

L
xdx �

Z L

�L
f�x� sin

j�

L
xdx

which gives �
�	����

��� Convergence

If f�x� is piecewise smooth on ��L� L� then the series converges to either the periodic exten�
sion of f�x�� where the periodic extension is continuous� or to the average of the two limits�
where the periodic extension has a jump discontinuity�

It is always helpful to give several examples and sketches�

Example 

Given the function

f�x� �

�
�� x � �
�� x � ��

�
�
���

The following �gures show the sketch of f�x�� its periodic extension of period � and the
sketch of the Fourier series of f�x��

Notice that the sketch of f�x� on ���� �� is copied to ��� 	� and so on to the right and to
the left�

Notice that the only dierence is at the points of discontinuity xn � �n� n � �� �� � � �

��
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Figure 	�� Sketch of f�x� given in Example 
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Figure 	
� Sketch of the periodic extension
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Figure 	�� Sketch of the Fourier series
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Figure 	�� Sketch of f�x� given in Example �
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Figure 	�� Sketch of the periodic extension

Example �

f�x� �

��
�

sin
�

L
x� �L � x � �

x� � � x �
L

�

L� x�
L

�
� x � L

�
�
���

The Fourier series will be exactly the same since the periodic extension has no jump
discontinuity� See Figure 	� for the sketch of f�x� and Figure 	� for the sketch of the
periodic extension�

��� Fourier Cosine and Sine Series

In the examples in the last section we have seen Fourier series for which all ak are zero� In
such a case the Fourier series includes only sine functions� Such a series is called a Fourier
sine series� The problems discussed in the previous chapter led to Fourier sine series or
Fourier cosine series depending on the boundary conditions�

��



Let us now recall the de�nition of odd and even functions� A function f�x� is called odd
if

f��x� � �f�x� �
�����

and even� if
f��x� � f�x�� �
�����

Since sin kx is an odd function� the sum is also an odd function� therefore a function f�x�
having a Fourier sine series expansion is odd� Similarly� an even function will have a Fourier
cosine series expansion�

Example �
f�x� � x� on ��L� L�� �
���	�

The function is odd and thus the Fourier series expansion will have only sine terms� i�e� all
ak � �� In fact we have found in one of the examples in the previous section that

f�x� 	
�X
k��

�L

k�
����k
� sin

k�

L
x �
�����

Example �
f�x� � x� on ��L� L�� �
���
�

The function is even and thus all bk must be zero�

a� �
�

L

Z L

�L
x�dx �

�

L

Z L

�
x�dx �

�

L

x�

	

����L
�
�

�L�

	
� �
�����

ak �
�

L

Z L

�L
x� cos

k�

L
xdx �

Use table of integrals

�
�

L

�
��x
 L

k�

��
cos

k�

L
x
����L�L�

�
��k�

L

��

x� � �

�
A
 L

k�

��
sin

k�

L
x
����L�L
�
� �

The sine terms vanish at both ends and we have

ak �
�

L
�L


L

k�

��
cos k� � �



L

k�

��
����k� �
�����

Notice that the coe�cients of the Fourier sine series can be written as

bk �
�

L

Z L

�
f�x� sin

k�

L
xdx� �
�����

that is the integration is only on half the interval and the result is doubled� Similarly for
the Fourier cosine series

ak �
�

L

Z L

�
f�x� cos

k�

L
xdx� �
�����

���
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Figure 	�� Graph of f�x� � x� and the N th partial sums for N � �� 
� ��� ��

If we go back to the examples in the previous chapter� we notice that the partial dier�
ential equation is solved on the interval ��� L�� If we end up with Fourier sine series� this
means that the initial solution f�x� was extended as an odd function to ��L� ��� It is the
odd extension that we expand in Fourier series�

Example �
Give a Fourier cosine series of

f�x� � x for � � x � L� �
������

This means that f�x� is extended as an even function� i�e�

f�x� �

� �x �L � x � �
x � � x � L

�
������

or
f�x� � jxj on ��L� L�� �
������

The Fourier cosine series will have the following coe�cients

a� �
�

L

Z L

�
xdx �

�

L

�

�
x�
����L
�
� L� �
����	�

ak �
�

L

Z L

�
x cos

k�

L
xdx �

�

L

�
L

k�
x sin

k�

L
x�



L

k�

��
cos

k�

L
x

� ����L
�

���
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Figure ��� Graph of f�x� � jxj and the N th partial sums for N � �� 
� ��� ��

�
�

L

�
� �



L

k�

��
cos k� � ��



L

k�

���
�

�

L



L

k�

�� h
����k � �

i
� �
������

Therefore the series is

jxj 	 L

�
�

�X
k��

�L

�k���

h
����k � �

i
cos

k�

L
x� �
����
�

In the next four �gures we have sketched f�x� � jxj and the N th partial sums for various
values of N �

To sketch the Fourier cosine series of f�x�� we �rst sketch f�x� on ��� L�� then extend the
sketch to ��L� L� as an even function� then extend as a periodic function of period �L� At
points of discontinuity� take the average�

To sketch the Fourier sine series of f�x� we follow the same steps except that we take
the odd extension�

Example ��

f�x� �

��
�

sin 	
L
x� �L � x � �

x� � � x � L
�

L� x� L
�
� x � L

�
������

The Fourier cosine series and the Fourier sine series will ignore the de�nition on the interval
��L� �� and take only the de�nition on ��� L�� The sketches follow on �gures ����	�

���
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Figure ��� Sketch of f�x� given in Example ��
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Figure ��� Sketch of the Fourier sine series and the periodic odd extension

Notes�
�� The Fourier series of a piecewise smooth function f�x� is continuous if and only if

f�x� is continuous and f��L� � f�L��
�� The Fourier cosine series of a piecewise smooth function f�x� is continuous if and only

if f�x� is continuous� �The condition f��L� � f�L� is automatically satis�ed��
	� The Fourier sine series of a piecewise smooth function f�x� is continuous if and only

if f�x� is continuous and f��� � f�L��

Example ��
The previous example was for a function satisfying this condition� Suppose we have the
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Figure �	� Sketch of the Fourier cosine series and the periodic even extension
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following f�x�

f�x� �

�
� �L � x � �
x � � x � L

�
������

The sketches of f�x�� its odd extension and its Fourier sine series are given in �gures �����
correspondingly�
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Figure ��� Sketch of f�x� given by example ��
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Figure ��� Sketch of the Fourier sine series is not continuous since f��� �� f�L�
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Problems

�� For each of the following functions
i� Sketch f�x�
ii� Sketch the Fourier series of f�x�
iii� Sketch the Fourier sine series of f�x�
iv� Sketch the Fourier cosine series of f�x�

a� f�x� �

�
x x � �

� � x x � �

b� f�x� � ex

c� f�x� � � � x�

d� f�x� �

�
�
�
x� � �� � x � �
x � � x � �

�� Sketch the Fourier sine series of

f�x� � cos
�

L
x�

Roughly sketch the sum of the �rst three terms of the Fourier sine series�

	� Sketch the Fourier cosine series and evaluate its coe�cients for

f�x� �

��
�

� x �
L

�

	
L

�
� x �

L

�

�
L

�
� x

�� Fourier series can be de�ned on other intervals besides ��L� L�� Suppose g�y� is de�ned
on �a� b� and periodic with period b� a� Evaluate the coe�cients of the Fourier series�


� Expand

f�x� �

��
�

� � � x �
�

�
�

�

�
� x � �

in a series of sinnx�

a� Evaluate the coe�cients explicitly�

b� Graph the function to which the series converges to over ��� � x � ���

��




��	 Term by Term Di
erentiation

In order to check that the solution obtained by the method of separation of variables satis�es
the PDE� one must be able to dierentiate the in�nite series�
�� A Fourier series that is continuous can be dierentiated term by term if f ��x� is piecewise
smooth� The result of the dierentiation is the Fourier series of f ��x��
�� A Fourier cosine series that is continuous can be dierentiated term by term if f ��x� is
piecewise smooth� The result of the dierentiation is the Fourier sine series of f ��x��
	� A Fourier sine series that is continuous can be dierentiated term by term if f ��x� is
piecewise smooth and f��� � f�L� � �� The result of the dierentiation is the Fourier
cosine series of f ��x��
Note that if f�x� does not vanish at x � � and x � L then the result of dierentiation is
given by the following formula�

f ��x� 	 �

L
�f�L�� f���� �

�X
n��

�
n�

L
bn �

�

L
�����nf�L�� f����

�
cos

n�

L
x� �
�����

Note that if f�L� � f��� � � the above equation reduces to term by term dierentiation�
Example ��
Given the Fourier sine series of f�x� � x�

x 	 �
�X
n��

L

n�
����n
� sin

n�

L
x� �
�����

Since f�L� � L �� �� we get upon dierntiation using �
�����

� 	 �

L
�L� �� �

�X
n��

��
�
n�

L
�
L

n�
����n
�

� �z �
bn

�
�

L
����nL

��
 cos

n�

L
x

The term in braces is equal
�����n
� � �����n � ��

Therefore the in�nite series vanishes and one gets

� 	 ��

that is� the Fourier cosine series of the constant function � is ��

���



Problems

�� Given the Fourier sine series

cos
�

L
x 	

�X
n��

bn sin
n�

L
x

bn �

��
�

� n is odd
�n

��n� � ��
n is even

Determine the Fourier cosine series of sin
�

L
x�

�� Consider

sinhx 	
�X
n��

an sinnx�

Determine the coe�cients an by dierentiating twice�

���



��� Term by Term Integration

A Fourier series of a piecewise smooth function f�x� can always be integrated term by term
and the result is a convergent in�nite series that always converges to

R L
�L f�x�dx even if the

original series has jumps�
Example �	
The Fourier series of f�x� � � is

� 	 �

�

X
n��
�
���

�

n
sin

n�

L
x �
�����

Integrate term by term from � to x gives

x� � 	 � �

�

X
n��
�
���

�

n

L

n�
cos

n�

L
x
����x
�

� � �

�

X
n��
�
���

L

n��
cos

n�

L
x�

�

�

�
L

���
�

L

	��
�

L


��
� � � �

� �
�����

The last sum is the constant term �n � �� of the Fourier cosine series of f�x� � x� which is

�

L

Z L

�
xdx �

L

�
� �
���	�

Therefore

x 	 L

�
� �L

��

X
n��
�
���

�

n�
cos

n�

L
x� �
�����

We have also found� as a by�product� the sum of the following in�nite series

�L

��

�
�

��
�

�

	�
� � � �

�
�
L

�

or
�

��
�

�

	�
� � � � � ��

�
� �
���
�

A second integration gives the Fourier sine series of

x�

�
� L

�
x

x�

�
	 L

�
x� �L�

��

X
n��
�
���

�

n�
sin

n�

L
x

In order to get the Fourier sine series of x�� one must substitute the sine series of x in the
above and multiply the new right hand side by ��

���



Problems
�� Consider

x� 	
�X
n��

an sin
n�

L
x

a� Determine an by integration of the Fourier sine series of f�x� � �� i�e� the series

� 	 �

�

�X
n��

�

�n� �
sin

�n� �

L
�x

b� Derive the Fourier cosine series of x� from this�

�� Suppose that

cosh x 	
�X
n��

bn sin
n�

L
x

a� Determine the coe�cients bn by dierentiating twice�
b� Determine bn by integrating twice�

	� Evaluate �X
n��

�

��n� ���

by using the integration of Fourier sine series of f�x� � � �see problem � part a��

���



��� Full solution of Several Problems

In this section we give the Fourier coe�cients for each of the solutions in the previous chapter�

Example ��

ut � kuxx� �
�����

u��� t� � �� �
�����

u�L� t� � �� �
���	�

u�x� �� � f�x�� �
�����

The solution given in the previous chapter is

u�x� t� �
�X
n��

bne
�k�n�

L
	�t sin

n�

L
x� �
���
�

Upon substituting t � � in �
���
� and using �
����� we �nd that

f�x� �
�X
n��

bn sin
n�

L
x� �
�����

that is bn are the coe�cients of the expansion of f�x� into Fourier sine series� Therefore

bn �
�

L

Z L

�
f�x� sin

n�

L
xdx� �
�����

Example �


ut � kuxx� �
�����

u��� t� � u�L� t�� �
�����

ux��� t� � ux�L� t�� �
������

u�x� �� � f�x�� �
������

The solution found in the previous chapter is

u�x� t� �
a�
�

�
�X
n��

�an cos
�n�

L
x � bn sin

�n�

L
x�e�k�

�n�
L

	�t� �
������

As in the previous example� we take t � � in �
������ and compare with �
������ we �nd that

f�x� �
a�
�

�
�X
n��

�an cos
�n�

L
x� bn sin

�n�

L
x�� �
����	�

Therefore �notice that the period is L�

an �
�

L

Z L

�
f�x� cos

�n�

L
xdx� n � �� �� �� � � � �
������

���



bn �
�

L

Z L

�
f�x� sin

�n�

L
xdx� n � �� �� � � � �
����
�

�Note that
Z L

�
sin�

�n�

L
xdx �

L

�
�

Example ��
Solve Laplace�s equation inside a rectangle�

uxx � uyy � �� � � x � L� � � y � H� �
������

subject to the boundary conditions�

u��� y� � g��y�� �
������

u�L� y� � g��y�� �
������

u�x� �� � f��x�� �
������

u�x�H� � f��x�� �
������

Note that this is the �rst problem for which the boundary conditions are inhomogeneous�
We will show that u�x� y� can be computed by summing up the solutions of the following
four problems each having 	 homogeneous boundary conditions�
Problem ��

u�xx � u�yy � �� � � x � L� � � y � H� �
������

subject to the boundary conditions�

u���� y� � g��y�� �
������

u��L� y� � �� �
����	�

u��x� �� � �� �
������

u��x�H� � �� �
����
�

Problem ��

u�xx � u�yy � �� � � x � L� � � y � H� �
������

subject to the boundary conditions�

u���� y� � �� �
������

u��L� y� � g��y�� �
������

u��x� �� � �� �
������

u��x�H� � �� �
���	��

Problem 	�

���



u�xx � u�yy � �� � � x � L� � � y � H� �
���	��

subject to the boundary conditions�

u���� y� � �� �
���	��

u��L� y� � �� �
���		�

u��x� �� � f��x�� �
���	��

u��x�H� � �� �
���	
�

Problem ��

u�xx � u�yy � �� � � x � L� � � y � H� �
���	��

subject to the boundary conditions�

u���� y� � �� �
���	��

u��L� y� � �� �
���	��

u��x� �� � �� �
���	��

u��x�H� � f��x�� �
������

It is clear that since u�� u�� u�� and u� all satisfy Laplace�s equation� then

u � u� � u� � u� � u�

also satis�es that same PDE �the equation is linear and the result follows from the principle
of superposition�� It is also as straightforward to show that u satis�es the inhomogeneous
boundary conditions �
��������
�������

We will solve only problem 	 and leave the other 	 problems as exercises�
Separation of variables method applied to �
���	����
���	
� leads to the following two

ODEs
X �� � �X � �� �
������

X��� � �� �
������

X�L� � �� �
����	�

Y �� � �Y � �� �
������

Y �H� � �� �
����
�

The solution of the �rst was obtained earlier� see �����������������

Xn � sin
n�

L
x� �
������

�n �


n�

L

��
� n � �� �� � � � �
������

���



Using these eigenvalues in �
������ we have

Y ��
n �



n�

L

��
Yn � � �
������

which has a solution
Yn � An cosh

n�

L
y �Bn sinh

n�

L
y� �
������

Because of the boundary condition and the fact that sinh y vanishes at zero� we prefer to
write the solution as a shifted hyperbolic sine �see ������
��� i�e�

Yn � An sinh
n�

L
�y �H�� �
���
��

Clearly� this vanishes at y � H and thus �
����
� is also satis�ed� Therefore� we have

u��x� y� �
�X
n��

An sinh
n�

L
�y �H� sin

n�

L
x� �
���
��

In the exercises� the reader will have to show that

u��x� y� �
�X
n��

Bn sinh
n�

H
�x� L� sin

n�

H
y� �
���
��

u��x� y� �
�X
n��

Cn sinh
n�

H
x sin

n�

H
y� �
���
	�

u��x� y� �
�X
n��

Dn sinh
n�

L
y sin

n�

L
x� �
���
��

To get An� Bn� Cn� and Dn we will use the inhomogeneous boundary condition in each
problem�

An sinh
n�

L
��H� �

�

L

Z L

�
f��x� sin

n�

L
xdx� �
���

�

Bn sinh
n�

H
��L� � �

H

Z H

�
g��y� sin

n�

H
ydy� �
���
��

Cn sinh
n�L

H
�

�

H

Z H

�
g��y� sin

n�

H
ydy� �
���
��

Dn sinh
n�H

L
�

�

L

Z L

�
f��x� sin

n�

L
xdx� �
���
��

Example ��
Solve Laplace�s equation inside a circle of radius a�

r�u �
�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���
� �� �
���
��

��	



subject to
u�a� �� � f���� �
������

Let
u�r� �� � R�r�#���� �
������

then

#
�

r
�rR��� �

�

r�
R#�� � ��

Multiply by
r�

R#
r �rR���

R
� �#��

#
� �� �
������

Thus the ODEs are
#�� � �# � �� �
����	�

and
r�rR��� � �R � �� �
������

The solution must be periodic in � since we have a complete disk� Thus the boundary
conditions for # are

#��� � #����� �
����
�

#���� � #������ �
������

The solution of the # equation is given by

�� � �� #� � �� �
������

�n � n�� #n �

�
sinn�
cos n� n � �� �� � � �

�
������

The only boundary condition for R is the boundedness� i�e�

jR���j ��� �
������

The solution for the R equation is given by �see Euler�s equation in any ODE book�

R� � C� ln r �D�� �
������

Rn � Cnr
�n �Dnr

n� �
������

Since ln r and r�n are not �nite at r � � �which is in the domain�� we must have C� � Cn � ��
Therefore

u�r� �� �
�

�
�� �

�X
n��

rn��n cos n� � �n sinn��� �
������

Using the inhomogeneous boundary condition

f��� � u�a� �� �
�

�
�� �

�X
n��

an��n cosn� � �n sinn��� �
����	�

���



we have the coe�cients �Fourier series expansion of f����

�� �
�

�

Z �	

�
f���d�� �
������

�n �
�

�an

Z �	

�
f��� cosn�d�� �
����
�

�n �
�

�an

Z �	

�
f��� sinn�d�� �
������

The boundedness condition at zero is necessary only if r � � is part of the domain�

In the next example� we show how to overcome the Gibbs phenomenon resulting from
discontinuities in the boundary conditions�

Example ��
Solve Laplace�s equation inside a recatngular domain ��� a����� b� with nonzero Dirichlet

boundary conditions on each side� i�e�

r�u � � �
������

u�x� �� � g��x�� �
������

u�a� y� � g��y�� �
������

u�x� b� � g��x�� �
������

u��� y� � g��y�� �
������

assuming that g��a� �� g���� and so forth at other corners of the rectangle� This discontinuity
causes spurios oscillations in the soultion� i�e� we have Gibbs phenomenon�

The way to overcome the problem is to decompose u to a sum of two functions

u � v � w �
������

where w is bilinear function and thus satis�es r�w � �� and v is harmonic with boundary
conditions vanishing at the corners� i�e�

r�v � � �
����	�

v � g � w� on the boundary� �
������

In order to get zero boundary conditions on the corners� we must have the function w be
of the form

w�x� y� � g��� ��
�a� x��b� y�

ab
� g�a� ��

x�b� y�

ab
� g�a� b�

xy

ab
� g��� b�

�a� x�y

ab
� �
����
�

and
g�x� �� � g��x� �
������

g�a� y� � g��y� �
������

g�x� b� � g��x� �
������

g��� y� � g��y�� �
������

It is easy to show that this w satis�es Laplace�s equation and that v vanishes at the
corners and therefore the discontinuities disappear�

��




Problems

�� Solve the heat equation

ut � kuxx� � � x � L� t � ��

subject to the boundary conditions

u��� t� � u�L� t� � ��

Solve the problem subject to the initial value�

a� u�x� �� � � sin �	
L
x�

b� u�x� �� � � cos �	
L
x�

�� Solve the heat equation

ut � kuxx� � � x � L� t � ��

subject to
ux��� t� � �� t � �

ux�L� t� � �� t � �

a� u�x� �� �

��
�

� x � L
�

� x � L
�

b� u�x� �� � � � � cos �	
L
x�

	� Solve the eigenvalue problem
��� � ���

subject to
���� � �����

����� � ������

�� Solve Laplace�s equation inside a wedge of radius a and angle ��

r�u �
�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���
� �

subject to
u�a� �� � f����

u�r� �� � u��r� �� � ��

���




� Solve Laplace�s equation inside a rectangle � � x � L� � � y � H subject to

a� ux��� y� � ux�L� y� � u�x� �� � �� u�x�H� � f�x��

b� u��� y� � g�y�� u�L� y� � uy�x� �� � u�x�H� � ��

c� u��� y� � u�L� y� � �� u�x� ��� uy�x� �� � �� u�x�H� � f�x��

�� Solve Laplace�s equation outside a circular disk of radius a� subject to

a� u�a� �� � ln � � � cos 	��

b� u�a� �� � f����

�� Solve Laplace�s equation inside the quarter circle of radius �� subject to

a� u��r� �� � u�r� ���� � �� u��� �� � f����

b� u��r� �� � u��r� ���� � �� ur��� �� � g����

c� u�r� �� � u�r� ���� � �� ur��� �� � ��

�� Solve Laplace�s equation inside a circular annulus �a � r � b�� subject to

a� u�a� �� � f���� u�b� �� � g����

b� ur�a� �� � f���� ur�b� �� � g����

�� Solve Laplace�s equation inside a semi�in�nite strip �� � x � �� � � y � H� subject
to

uy�x� �� � �� uy�x�H� � �� u��� y� � f�y��

��� Consider the heat equation

ut � uxx � q�x� t�� � � x � L�

subject to the boundary conditions

u��� t� � u�L� t� � ��

Assume that q�x� t� is a piecewise smooth function of x for each positive t� Also assume that
u and ux are continuous functions of x and uxx and ut are piecewise smooth� Thus

u�x� t� �
�X
n��

bn�t� sin
n�

L
x�

Write the ordinary dierential equation satis�ed by bn�t��

��� Solve the following inhomogeneous problem

�u

�t
� k

��u

�x�
� e�t � e��t cos

	�

L
x�

���



subject to
�u

�x
��� t� �

�u

�x
�L� t� � ��

u�x� �� � f�x��

Hint � Look for a solution as a Fourier cosine series� Assume k �� �L�

�	�
�

��� Solve the wave equation by the method of separation of variables

utt � c�uxx � �� � � x � L�

u��� t� � ��

u�L� t� � ��

u�x� �� � f�x��

ut�x� �� � g�x��

�	� Solve the heat equation

ut � �uxx� � � x � L�

subject to the boundary conditions

u��� t� � ux�L� t� � ��

and the initial condition

u�x� �� � sin
	

�

�

L
x�

��� Solve the heat equation

�u

�t
� k

�
�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���

�

inside a disk of radius a subject to the boundary condition

�u

�r
�a� �� t� � ��

and the initial condition
u�r� �� �� � f�r� ��

where f�r� �� is a given function�

���



SUMMARY
Fourier Series

f�x� 	 a�
�

�
�X
n��



an cos

n�

L
x � bn sin

n�

L
x
�

ak �
�

L

Z L

�L
f�x� cos

k�

L
xdx for k � �� �� �� � � �

bk �
�

L

Z L

�L
f�x� sin

k�

L
xdx for k � �� �� � � �

Solution of Euler�s equation
r�rR��� � �R � �

For �� � � the solution is R� � C� ln r � C�

For �n � n� the solution is Rn � D�r
n �D�r

�n� n � �� �� � � �

���



� Sturm�Liouville Eigenvalue Problem

��� Introduction

In the previous chapters� we introduced the method of separtion of variables and gave several
examples of constant coe�cient partial dierential equations� The method in these cases led
to the second order ordinary dierential equation

X ���x� � �X�x� � �

subject to a variety of boundary conditions� We showed that such boundary value problems
have solutions �eigenfunctions Xn� for certain discrete values of �n �eigenvalues��

In this chapter we summarize those results in a theorem and show how to use this theorem
for linear partial dierential equations NOT having constant coe�cients� We start by giving
several examples of such linear partial dierential equations�

Example Heat �ow in a nonuniform rod�

Recall that the temperature distribution in a rod is given by ���	���

c�x���x�
�u

�t
�

�

�x

�
K
�u

�x

�
� S � �������

where c�x� is the speci�c heat� ��x� is the mass density and K�x� is the thermal conduc�
tivity� The method of separation of variables was only applied to homogeneous problems
�nonhomogeneous problems will be discussed in Chapter ��� Therefore the only possibility
for the source S is

S�x� t� � ��x�u�x� t�� �������

Such problems may arise in chemical reactions that generate heat �S � �� or remove heat
�S � ��� We now show how to separate the variables for ������� � �������� Let� as before�

u�x� t� � X�x�T �t�

be substituted in the PDE� then

c�x���x�X�x� "T �t� � T �t� �K�x�X ��x��� � ��x�X�x�T �t�� �����	�

Divide by c�x���x�X�x�T �t� then �����	� becomes

"T �t�

T �t�
�

�

c�x���x�

�K�x�X ��x���

X�x�
�

��x�

c�x���x�
� �������

Now the variables are separated� and therefore� as we have seen in Chapter ��

"T �t� � �T �t� � � �����
�

�K�x�X ��x��� � ��x�X�x� � �c�x���x�X�x� � �� �������

���



Note the dierences between these two ODE�s and the constant coe�cients case �
i� The T equation has no constant in the term containing �� since that is no longer a
constant�
ii� The X equation contains three terms� The �rst one is dierent than the constant
coe�cient case because K is a function of x� The second term is the result of the special
form of inhomogeneity of the problem� The third term contains a fuction c�x���x� multiplying
the second term of the constant coe�cients case�
Remark � Note that if K� c� and � were constants then ������� becomes

KX ���x� � ��x�X�x� � �c�X�x� � ��

In this case one could go back to ������� and have
c�

K
on the T side� The question we

will discuss in this chapter is � What can we conclude about the eigenvalues �n and the
eigenfunctions Xn�x� of �������� Physically we know that if � � � some negative eigenvalues
are possible� �Recall that if � � �� T grows exponentially since the T equation �����
� has
the solution T �t� � ce�t��

Example Circularly symmetric heat �ow problem

Recall that heat �ow in a disk of radius a can be written in polar coordinates as follows
�Exercise �� Section 
���

d

dr

�
r
dR

dr

�
� �rR�r� � �� � � r � a �������

jR���j ��� �singularity condition�

The coe�cients are not constants in this case� even though the disk is uniform�

De�nition ��� The Sturm � Liouville dierential equation is of the form

d

dx

�
p�x�

dX�x�

dx

�
� q�x�X�x� � ���x�X�x� � �� a � x � b� �������

Examples �
i� p � �� q � �� � � �� see ��������
ii� p � k� q � �� � � c�� see ��������
iii� p�r� � r� q � �� ��r� � r� see ��������
The following boundary conditions were discussed

X��� � X�L� � ��

X ���� � X�L� � ��

X��� � X ��L� � ��

X ���� � X ��L� � ��

X��� � �� X�L� �X ��L� � �� �Exercise �e� Ch� ����

���



X��� � X�L�� X ���� � X ��L��

jX���j ���

De�nition ��� A Sturm�Liouville dierential equation ������� along with the boundary con�
ditions

��X�a� � ��X
��a� � �� �������

��X�b� � ��X
��b� � �� ��������

where ��� ��� ��� and �� are real numbers is called a regular Sturm�Liouville problem� if
the coe�cients p�x�� q�x�� and ��x� are real and continuous functions and if both p�x� and
��x� are positive on �a� b�� Note that except periodic conditions and singularity� all other
boundary conditions discussed are covered by the above set�

Theorem For a regular Sturm�Liouville problem the following is true
i� All the eigenvalues � are real
ii� There exist an in�nite number of eigenvalues

�� � �� � � � � � �n � � � �

a� there is a smallest eigenvalue denoted by ��

b� �n �� as n��
iii� Corresponding to each �n there is an eigenfunction Xn �unique up to an arbitrary
multiplicative constant�� Xn has exactly n�� zeros in the open interval �a� b�� This is called
oscillation theorem�
iv� The eigenfunctions form a complete set� i�e� any smooth function f�x� can be represented
as

f�x� 	
�X
n��

anXn�x�� ��������

This in�nite series� called generalized Fourier series� converges to
f�x
� � f�x��

�
if an are

properly chosen�
v� Eigenfunctions belonging to dierent eigenvalues are orthogonal relative to the weight ��
i�e� Z b

a
��x�Xn�x�Xm�x�dx � �� if �n �� �m� ��������

vi� Any eigenvalue can be related to its eigenfunction by the following� so called� Rayleigh
quotient

� �
�p�x�X�x�X ��x�jba �

R b
a fp�x��X ��x��� � q�x�X��x�g dxR b

a ��x�X
��x�dx

� ������	�

The boundary conditions may simplify the boundary term in the numerator� The Rayleigh
quotient can be used to approximate the eigenvalues and eigenfunctions� The proof and
some remarks about generalizations will be given in the appendix�

���



Example

X �� � �X � �� ��������

X��� � �� ������
�

X�L� � �� ��������

We have found that

�n �


n�

L

��
� n � �� �� � � � ��������

Xn � sin
n�

L
x� n � �� �� � � � ��������

Clearly all eigenvalues are real� The smallest one is �� �


�

L

��
� There is no largest as can

be seen from ��������� For each eigenvalue there is one eigenfunction� The eigenfunction

X� � sin
�

L
x� for example� does NOT vanish inside the interval ��� L�� X� vanishes once

inside the interval ��� L�� i�e� X� � � for X � L
�
� The generalized Fourier series in this case

is the Fourier sine series and the coe�cients are

an �

Z L

�
f�x� sin

n�

L
xdxR L

� sin� n	
L
xdx

�note � � � �� ��������

The Rayleigh quotient in this case is

� �
�X�x�X ��x�jL� �

R L
� �X

��x���dxR L
� X��x�dx

�

R L
� �X

��x���dxR L
� X��x�dx

� ��������

This does NOT determine �� but one can see that � � � �Exercise��

Example nonuniform rod

c�x���x�ut � �K�x�ux�x� ��������

u��� t� � ux�L� t� � �� ��������

u�x� �� � f�x�� ������	�

The method of separation of variables yields two ODE�s

"T �t� � �T �t� � �� ��������

�K�x�X ��x��� � �c�x���x�X�x� � �� ������
�

X��� � �� ��������

X ��L� � �� ��������

��	



We cannot obtain the eigenvalues and eigenfunctions but we know from the last theorem
that the solution is

u�x� t� �
�X
n��

Tn���e
�ntXn�x� ��������

where

Tn��� �

R L
� f�x�Xn�x�c�x���x�dxR L

� X�
n�x�c�x���x�dx

� ��������

�The details are left for the reader��
What happens for t large �the system will approach a steady state� can be found by examining
��������� Since �n �� as n��� the solution will be

u�x� t� � T����e
��tX��x� �if T���� �� ��� �����	��

since other terms will be smaller because of the decaying exponential factor� Therefore the
�rst eigenpair ��� X��x� is su�cient for the steady state� This eigenpair can be found by
approximation of the Rayleigh quotient�
De�nition ��� A Sturm�Liouville problem is called singular if either one of the following
conditions occurs �
i� The function p�x� vanishes at one or both of the endpoints�
ii� One or more of the coe�cients p�x�� q�x�� or ��x� becomes in�nite at either of the
endpoints�
iii� One of the endpoints is in�nite�

Example

The circularly symmetric heat �ow problem

d

dr

�
r
dR

dr

�
� �rR�r� � �� � � r � a�

leads to a singular Sturm�Liouville problem since p�r� � r vanishes at r � ��

���



Problems

�� a� Show that the following is a regular Sturm�Liouville problem

X ���x� � �X�x� � ��

X��� � ��

X ��L� � ��

b� Find the eigenpairs �n� Xn directly�

c� Show that these pairs satisfy the results of the theorem�

�� Prove �������� � �����	���

	� a� Is the following a regular Sturm�Liouville problem�

X ���x� � �X�x� � ��

X��� � X�L��

X ���� � X ��L��

Why or why not�
b� Find the eigenpairs �n� Xn directly�
c� Do they satisfy the results of the theorem� Why or why not�

�� Solve the regular Sturm�Liouville problem

X ���x� � aX�x� � �X�x� � �� a � ��

X��� � X�L� � ��

For what range of values of a is � negative�


� Solve the ODE

X ���x� � ��X�x� � �X�x� � �� � � ��

X��� � X ���� � ��

�� Consider the following Sturm�Liouville eigenvalue problem

d

dx

�
x
du

dx

�
� �

�

x
u � �� � � x � ��

with boundary conditions
u��� � u��� � ��

��




Determine the sign of all the eigenvalues of this problem �you don�t have to explicitly deter�
mine the eigenvalues�� In particular� is zero an eigenvalue of this problem�

�� Consider the following model approximating the motion of a string whose density �along
the string� is proportional to �� � x����

�� � x���utt � uxx � �� � � x � �� t � �

subject to the following initial conditions

u�x� �� � f�x��

ut�x� �� � ��

and boundary conditions
u��� t� � u�L� t� � ��

a� Show that the ODE for X resulting from separation of variables is

X �� �
�

�� � x��
X � ��

b� Obtain the boundary conditions and solve�
Hint� Try X � �� � x�a�

���



��� Boundary Conditions of the Third Kind

In this section we discuss the solution of a regular Sturm�Liouville problem having a more
general type of boundary conditions� We will show that even though the coe�cients are
constant� we cannot give the eigenvalues in closed form�

Example
Suppose we want to �nd the temperature distribution in a rod of length L where the right
end is allowed to cool down� i�e�

ut � kuxx � � x � L� �������

u��� t� � �� �������

ux�L� t� � �hu�L� t�� �����	�

u�x� �� � f�x��

where h is a positive constant�
The Sturm�Liousville problem is �see exercise�

X �� � �X � �� �������

X��� � �� �����
�

X ��L� � �hX�L�� �������

We consider these three cases for �� �If we prove that the operator is self�adjoint� then we
get that the eigenvalues must be real��

−2 −1 0 1 2 3 4 5 6 7 8
−4
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−2

−1

0
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3

4

Figure ��� Graphs of both sides of the equation in case �

Case �� � � �
The solution that satis�es �����
� is

X � A sinh
p��x� �������

���



To satisfy ������� we have

A
p
�� cosh

p
��L � �hA sinh

p
��L�

or

tanh
p��L � � �

hL

p��L� �������

This equation for the eigenvalues can be solved either numerically or graphically� If we sketch
tanh

p��L and � �
hL

p��L as functions of
p��L then� since h � �� we have only one point

of intersection� i�e�
p��L � �� Since L � � �length� and � � � �assumed in this case�� this

point is not in the domain under consideration� Therefore � � � yields a trivial solution�
Case �� � � �
In this case the solution satisfying �����
� is

X � Bx� �������

Using the boundary condition at L� we have

B�� � hL� � �� ��������

Since L � � and h � �� the only possibility is again the trivial solution�

−2 −1 0 1 2 3 4 5 6 7 8
−10
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Figure ��� Graphs of both sides of the equation in case 	

Case 	� � � �
The solution is

X � A sin
p
�x� ��������

and the equation for the eigenvalues � is

tan
p
�L � �

p
�

h
��������

�see exercise��

���



Graphically� we see an in�nite number of solutions� all eigenvalues are positive and the reader
should show that

�n �
�
�n� �

�
��

L

��
as n���

���



Problems

�� Use the method of separation of variables to obtain the ODE�s for x and for t for equations
������� � �����	��

�� Give the details for the case � � � in solving ������� � ��������

	� Discuss
lim
n���n

for the above problem�

�� Write the Rayleigh quotient for ������� � ������� and show that the eigenvalues are all
positive� �That means we should have considered only case 	��


� What if h � � in �����	�� Is there an h for which � � � is an eigenvalue of this problem�

�	�



��� Proof of Theorem and Generalizations

In this section� we prove the theorem for regular Sturm�Liouville problems and discuss some
generalizations� Before we get into the proof� we collect several auxiliary results�

Let L be the linear dierential operator

Lu �
d

dx

�
p�x�

du

dx

�
� q�x�u� ���	���

Therefore the Sturm�Liouville dierential equation ������� can be written as

LX � ��X � �� ���	���

Lemma For any two dierentiable functions u�x�� v�x� we have

uLv � vLu �
d

dx

�
p�x�

�
u
dv

dx
� v

du

dx

��
� ���	�	�

This is called Lagrange�s identity�

Proof�
By ���	���

Lu � �pu��� � qu�

Lv � �pv��� � qv�

therefore
uLv � vLu � u �pv��� � uqv � v �pu��� � vqu�

since the terms with q cancel out� we have

�
d

dx
�pv�u�� u�pv� �

�
d

dx
�pu�v�� pu�v�

�

�
d

dx
�p �v�u� u�v�� �

Lemma For any two dierentable functions u�x�� v�x� we have

Z b

a
�uLv � vLu�dx � p�x� �uv� � vu�� jba� ���	���

This is called Green�s formula�

De�nition ��� A dierential operator L de�ned by ���	��� is called self�adjoint if

Z b

a
�uLv � vLu�dx � � ���	�
�

for any two dierentiable functions satisfying the boundary conditions �����������������

�	�



Remark� It is easy to show and is left for the reader that the boundary conditions ��������
�������� ensure that the right hand side of ���	��� vanishes�

We are now ready to prove the theorem and we start with the proof that the eigenfunc�
tions are orthogonal�

Let �n� �m be two distinct eigenvalues with corresponding eigenfunctions Xn� Xm� that
is

LXn � �n�Xn � ��
LXm � �m�Xm � ��

���	���

In addition� the eigenfunctions satisfy the boundary conditions� Using Green�s formula we
have Z b

a
�XmLXn �XnLXm� dx � ��

Now use ���	��� to get

��n � �m�
Z b

a
XnXm�dx � �

and since �n �� �m we must have Z b

a
XnXm�dx � �

which means that �see de�nition ��� Xn� Xm are orthogonal with respect to the weight � on
the interval �a� b��

This result will help us prove that the eigenvalues are real�
Suppose that � is a complex eigenvalue with eigenfunction X�x�� i�e�

LX � ��X � �� ���	���

If we take the complex conjugate of the equation ���	��� we have �since all the coe�cients
of the dierential equation are real�

L $X � $�� $X � �� ���	���

The boundary conditions for X are

��X�a� � ��X
��a� � ��

��X�b� � ��X
��b� � ��

Taking the complex conjugate and recalling that all �i are real� we have

�� $X�a� � �� $X ��a� � ��

�� $X�b� � �� $X ��b� � ��

Therefore $X satis�es the same regular Sturm�Liouville problem� Now using Green�s formula
���	��� with u � X and v � $X� and the boundary conditions for X� $X� we getZ b

a

�
XL $X � $XLX

	
dx � �� ���	���

�	�



But upon using the dierential equations ���	�������	��� in ���	��� we have

�
�� $�

	 Z b

a
�X $Xdx � ��

Since X is an eigenfunction then X is not zero and X $X � jXj� � �� Therefore the integral
is positive �� � �� and thus � � $� and hence � is real� Since � is an arbitrary eigenvalue�
then all eigenvalues are real�

We now prove that each eigenvalue has a unique �up to a multiplicative constant� eigen�
function�

Suppose there are two eigenfunctions X�� X� corresponnding to the same eigenvalue ��
then

LX� � ��X� � �� ���	����

LX� � ��X� � �� ���	����

Multiply ���	���� by X� and ���	���� by X� and subtract� then

X�LX� �X�LX� � �� ���	����

since � is the same for both equations� On the other hand� the left hand side� by Lagrange�s
identity ���	�	� is

X�LX� �X�LX� �
d

dx
�p �X�X

�
� �X�X

�
��� � ���	��	�

Combining the two equations� we get after integration that

p �X�X
�
� �X�X

�
�� � constant� ���	����

It can be shown that the constant is zero for any two eigenfunctions of the regular Sturm�
Liouville problem �see exercise�� Dividing by p� we have

X�X
�
� �X�X

�
� � �� ���	��
�

The left hand side is
d

dx



X�

X�

�
�

therefore
X�

X�
� constant

which means that X� is a multiple of X� and thus they are the same eigenfunction �up to a
multiplicative constant��

The proof that the eigenfunctions form a complete set can be found� for example� in
Coddington and Levinson ���

�� The convergence in the mean of the expansion is based
on Bessel�s inequality

�X
n��

�Z b

a
f�x�Xn�x���x�dx

��

� kfk� ���	����

�		



Completeness amounts to the absence of nontrivial functions orthogonal to all of the Xn� In
other words� for a complete set fXng� if the inner product of f with each Xn is zero and if
f is continuous then f vanishes identically�

The proof of existence of an in�nite number of eigenvalues is based on comparison theo�
rems� see e�g� Cochran ������� and will not be given here�

The Rayleigh quotient can be derived from ������� by multiplying through by X and
integrating over the interval �a� b�

Z b

a

�
X

d

dx
�pX �� � qX�

�
dx � �

Z b

a
X��dx � �� ���	����

Since the last integral is positive �X is an eigenfunction and � � �� we get after division by
it

� �
� R ba X �pX ��� dx� R ba qX�dxR b

a �X
�dx

� ���	����

Use integration by parts for the �rst integral in the numerator to get

� �

R b
a p �X

��� dx� R ba qX�dx� pXX �jbaR b
a �X

�dx
�

which is Rayleigh quotient�

Remarks�
��If q � � and pXX �jba � � then Rayleigh quotient proves that � 
 ��
�� Rayleigh quotient cannot be used to �nd the eigenvalues but it yields an estimate of

the smallest eigenvalue� In fact� we can �nd other eigenvalues using optimization techniques�

We now prove that any second order dierential equation whose highest order coe�cient
is positive can be put into the self adjoint form and thus we can apply the theorem we proved
here concerning the eigenpairs�
Lemma� Any second order dierential equation whose highest order coe�cient is positive
can be put into the self adjoint form by a simple multiplication of the equation�
Proof�

Given the equation

a�x�u���x� � b�x�u��x� � c�x�u�x� � �d�x�u�x� � �� � � x � �

with
a�x� � ��

then by multiplying the equation by

�

a�x�
e
R x
�
b��	�a��	d�

�	�



we have

u���x�e
R x
�
b��	�a��	d� �

b�x�

a�x�
u��x�e

R x
�
b��	�a��	d� �

c�x�

a�x�
u�x�e

R x
�
b��	�a��	d� � �

d�x�

a�x�
e
R x
�
b��	�a��	d� � ��

The �rst two terms can be combined

d

dx

�
u��x�e

R x
�
b��	�a��	d�

�

and thus upon comparison with ������� we see that

p�x� � e
R x
�
b��	�a��	d� �

q�x� �
c�x�

a�x�
p�x��

and

� �
d�x�

a�x�
p�x��

Remark� For periodic boundary conditions� the constant in ���	���� is not necessarily zero
and one may have more than one eigenfunction for the same eigenvalue� In fact� we have
seen in Chapter � that if the boundary conditions are periodic the eigenvalues are

�n �


�n�

L

��
� n � �� �� �� � � �

and the eigenfunctions for n � � are

Xn�x� �

��
�

cos
�n�

L
x n � �� �� � � �

sin
�n�

L
x n � �� �� � � �

However these two eigenfunctions are orthogonal as we have shown in Chapter 
� If in some
case� the eigenfunctions belonging to the same eigenvalue are not orthogonal� we can use
Gram�Schmidt orthogonalization process �similar to that discussed in Linear Algebra��

�	




Problems

�� Show that if u� v both satisfy the boundary conditions ���������������� then

p �uv� � vu�� jba � ��

�� Show that the right hand side of ���	��� is zero even if u� v satisfy periodic boundary
conditions� i�e�

u�a� � u�b�

p�a�u��a� � p�b�u��b��

and similarly for v�

	� What can be proved about eigenvalues and eigenfunctions of the circularly symmetric
heat �ow problem�
Give details of the proof�
Note� This is a singular Sturm�Liouville problem�

�� Consider the heat �ow with convection

ut � kuxx � V� ux� � � x � L� t � ��

a� Show that the spatial ordinary dierential equation obtained by separation of
variables is not in Sturm�Liouville form�

b� How can it be reduced to S�L form�

c� Solve the initial boundary value problem

u��� t� � �� t � ��

u�L� t� � �� t � ��

u�x� �� � f�x�� � � x � L�

�	�



��� Linearized Shallow Water Equations

In this section� we give an example of an eigenproblem where the eigenvalues appear also
in the boundary conditions� We show how to �nd all eigenvalues in such a case� The
eigenfunctions relate to the con�uent hypergeometric functions�

The shallow water equations are frequently used in simpli�ed dynamical studies of at�
mospheric and oceanographic phenomena� When the equations are linearized� the thickness
of the �uid is often assumed to be a linear function of one of the spatial variables� see Stan�
iforth� Williams and Neta ����	�� The basic equations are derived in Pedlosky ������� The
thickness of the �uid layer is given by

H�x� y� t� � H��y� � 	�x� y� t� �������

where
j	j � H�

If u� v are small velocity perturbations� the equations of motion become

�u

�t
� fv � �g �	

�x
�������

�v

�t
� fu � �g�	

�y
�����	�

�	

�t
�H�

�u

�x
�

�

�y
�vH�� � � �������

where f is the Coriolis parameter and g is the acceleration of gravity� We assume periodic
boundary conditions in x and wall conditions in y where the walls are at �L��� We also let

H� � D�



�� s

L
y
�

with D� the value at y � � and s is a parameter not necessarily small as long as H� is
positive in the domain�

It was shown by Staniforth et al ����	� that the eigenproblem is given by

� d

dy

�

�� s

L
y
�
d�

dy

�
� k�



�� s

L
y
�
�� ��c�� � � �����
�

d�

dy
�

�

c
f� � � on y � �L

�
�������

where

��c� �
k�c� � f �

gD�
� fs

Lc
�������

and k is the x�wave number�
Using the transformation

z � �k


L

s
� y

�
� �������

�	�



the eigenvalue problem becomes

d

dz

�
z
d�

dz

�
�
�
z

�
� ��c�L

�sk

�
� � �� z� � z � z
 �������

d�

dz
� �

c

f

�k
� � �� z � z�� ��������

where

z� �
�kL

s



�� s

�

�
� ��������

Notice that the eigenvalues ��c� appear nonlinearly in the equation and in the boundary
conditions�
Another transformation is necessary to get a familiar ODE� namely

� � e�z���� ��������

Thus we get Kummer�s equation �see e�g� Abramowitz and Stegun� ���
�

z��� � ��� z��� � a�c�� � � ������	�

�� �z��� �

�

�
� �

�

c

f

k

�
� �z�� � � ��������

where

a�c� �
�

�
� ��c�L

�sk
� ������
�

The general solution is a combination of the con�uent hypergeometric functions M�a� �% z�
and U�a� �% z� if a�c� is not a negative integer� For a negative integer� a�c� � �n� the solution
is Ln�z�� the Laguerre polynomial of degree n� We leave it as an exercise for the reader to
�nd the second solution in the case a�c� � �n�

�	�



Problems

�� Find the second solution of ������	� for a�c� � �n�
Hint� Use the power series solution method�

��

a� Find a relationship between M�a� b% z� and its derivative
dM

dz
�

b� Same for U �

	� Find in the literature a stable recurrence relation to compute the con�uent hypergeo�
metric functions�

�	�



��� Eigenvalues of Perturbed Problems

In this section� we show how to solve some problems which are slightly perturbed� The �rst
example is the solution of Laplace�s equation outside a near sphere� i�e� the boundary is
perturbed slightly�

Example Find the potential outside the domain

r � � � �P��cos �� ���
���

where P� is a Legendre polynomial of degree � and � is a small parameter� Clearly when
� � � the domain is a sphere of radius ��
The statement of the problem is

r�� � � in r 
 � � �P��cos �� ���
���

subject to the boundary condition

� � � on r � � � �P��cos �� ���
�	�

and the boundedness condition

�� � as r��� ���
���

Suppose we expand the potential � in powers of ��

��r� �� �� � ���r� �� � ����r� �� � �����r� �� � � � � ���
�
�

then we expect �� to be the solution of the unperturbed problem� i�e� �� �
�
r
� This will be

shown in this example� Substituting the approximation ���
�
� into ���
��� and ���
���� and
then comparing the coe�cients of �n� we �nd that

r��n � � ���
���

�n � � as r ��� ���
���

The last condition ���
�	� can be checked by using Taylor series

� � �jr��
�P��cos �	 �
�X
n��

��P��
n

n�

�n�

�rn
jr��� ���
���

Now substituting ���
�
� into ���
��� and collect terms of the same order to have

� � ����� �� � �
h
����� �� � P��cos ��

�����
�	
�r

i

� ��
h
����� ��� � P��cos ��

�����
�	
�r

� �
�
P �
� �cos ��

������
�	
�r�

i

� � � �

���



Thus the boundary conditions are
����� �� � � ���
���

����� �� � �P��cos ��
������ ��

�r
���
����

����� �� � �P��cos ��
������ ��

�r
� �

�
P �
� �cos ��

������� ��

�r�
���
����

The solution of ���
�������
��� for n � � subject to the boundary condition ���
��� is then

���r� �� �
�

r
���
����

as mentioned earlier� Now substitute the solution ���
���� in ���
���� to get

����� �� � P��cos ��
�

r�
jr�� � P��cos �� ���
��	�

Now solve ���
�������
��� for n � � subject to the boundary condition ���
��	� to get

���r� �� �
P��cos ��

r�
� ���
����

Using these ��� �� in ���
����� we get the boundary condition for ��

����� �� � �P �
� �cos �� �

	�

	

P��cos �� �

�

�
P��cos �� �

�



P��cos �� ���
��
�

and one can show that the solution of ���
�������
��� for n � � subject to the boundary
condition ���
��
� is

���r� �� �
	�

	


P��cos ��

r
�

�

�

P��cos ��

r�
�

�




�

r
� ���
����

Thus

��r� �� �
�

r
� �

P��cos ��

r�
� ��

�
�

	�

	


P��cos ��

r
�

�

�

P��cos ��

r�
�

�




�

r

�
� � � � ���
����

The next example is a perturbed equation but no perturbation in the boundary�

Example Consider a near uniform �ow with a parabolic perturbation� i�e�

u � � � �y� at in�nity� ���
����

In steady� inertially dominated inviscid �ow the vorticity � is constant along a streamline�
Thus the streamfunction ��x� y� �� satis�es

r�� � ����� �� in r � �� ���
����

���



subject to the boundary conditions

� � �� on r � �� ���
����

and

� � y �
�

	
�y� as r ��� ���
����

To �nd �� we note that in the far �eld

� � y �
�

	
�y� ���
����

and thus
� � �r�� � ���y� ���
��	�

or in terms of �

� � ���� �
�

	
���� � � � � ���
����

Now we suppose the streamfunction is given by the Taylor series

� � ���r� �� � ����r� �� � � � � ���
��
�

Substitute ���
��
� and ���
���� in ���
��������
���� we have upon comparing terms with no
��

r��� � � in r � ��

�� � � on r � ��

�� � r sin � as r ��
which has a solution

�� � sin �


r � �

r

�
� ���
����

Using ���
���� in the terms with �� we have

r��� � � sin �


r � �

r

�
in r � ��

�� � � on r � ��

�� � �

	
r� sin� � as r��

The solution is �see Hinch �������

�� �
�

	
r� sin� � � r ln r sin � � �

�

sin �

r
�

�

��

sin 	�

r�
� ���
����

The last example is of �nding the eigenvalues and eigenfunctions of a perturbed second
order ODE�

���



Example Find the eigenvalues and eigenfunctions of the perturbed Sturm Liouville prob�
lem

X ���x� � ��� �&�x��X�x� � �� � � x � � ���
����

subject to the boundary conditions

X��� � X��� � �� ���
����

Assume a perturbation for the nth eigenpair

�n � ���	
n � ����	

n � �����	
n � � � � ���
�	��

Xn � X��	
n � �X��	

n � ��X��	
n � � � � ���
�	��

Substituting these expansions in ���
���� and comparing terms with like powers of �� For
the zeroth power we have

X��	��
n � ���	

n X��	
n � �

X��	
n ��� � X��	

n ��� � ��

which has the unperturbed solution

���	
n � �n���� ���
�	��

X��	
n � sinn�x� ���
�		�

For the linear power of �� we have

X��	��
n � �n���X��	

n � �
�
&�x� � ���	

n

	
sinn�x� ���
�	��

X��	
n ��� � X��	

n ��� � �� ���
�	
�

The inhomogeneous ODE ���
�	�� can be solved by the method of eigenfunction expansion
�see Chapter ��� Let

X��	
n �

�X
m��

�m sinm�x� ���
�	��

and

�
�
&�x� � ���	

n

	
sinn�x �

�X
m��

&m sinm�x� ���
�	��

where

&m � ��
Z �

�
&�x� sinn�x sinm�xdx� ���	

n �nm� ���
�	��

Substituting ���
�	�� into ���
�	�� we get

�X
m��

n
��m��� � �n���

o
�m sinm�x �

�X
m��

&m sinm�x� ���
�	��

Thus

�m �
&m

��m��� � �n���
� m �� n� ���
����

��	



To �nd ���	
n � we multiply ���
�	�� by sinn�x and integrate on the interval ������ Thus the

linear order approximation to �n is given by

���	
n � ��

Z �

�
&�x� sin� n�xdx� ���
����

The linear order approximation to Xn is given by ���
�	�� with the coe�cients �m given by
���
����� What happens for n � m is left for the reader�

���



Problems

�� The �ow down a slightly corrugated channel is given by u�x� y� �� which satis�es

r�u � �� in jyj � h�x� �� � � � � cos kx

subject to
u � � on y � �h�x� ��

and periodic boundary conditions in x�
Obtain the �rst two terms for u�

�� The functions ��x� y� �� and ���� satisfy the eigenvalue problem

�xx � �yy � �� � � in � � x � �� � � �x�� � x� � y � �

subject to
� � � on the boundary�

Find the �rst order correction to the eigenpair

�
��	
� � sinx sin y

�
��	
� � �

��




SUMMARY
Theorem For a regular Sturm�Liouville problem

d

dx

�
p�x�

dX�x�

dx

�
� q�x�X�x� � ���x�X�x� � �� a � x � b�

��X�a� � ��X
��a� � ��

��X�b� � ��X
��b� � ��

the following is true
i� All the eigenvalues � are real
ii� There exist an in�nite number of eigenvalues

�� � �� � � � � � �n � � � �

a� there is a smallest eigenvalue denoted by ��

b� �n �� as n��
iii� Corresponding to each �n there is an eigenfunction Xn �unique up to an arbitrary
multiplicative constant�� Xn has exactly n� � zeros in the open interval �a� b��
iv� The eigenfunctions form a complete set� i�e� any smooth function f�x� can be represented
as

f�x� 	
�X
n��

anXn�x��

an �

R b
a f�x�Xn�x���x�dxR b

a X
�
n�x���x�dx

This in�nite series� called generalized Fourier series� converges to
f�x
� � f�x��

�
if an

are properly chosen�
v� Eigenfunctions belonging to dierent eigenvalues are orthogonal relative to the weight ��
i�e� Z b

a
��x�Xn�x�Xm�x�dx � �� if �n �� �m�

vi� Any eigenvalue can be related to its eigenfunction by the Rayleigh quotient

� �
�p�x�X�x�X ��x�jba �

R b
a fp�x��X ��x��� � q�x�X��x�g dxR b

a ��x�X
��x�dx

�

���



	 PDEs in Higher Dimensions

	�� Introduction

In the previous chapters we discussed homogeneous time dependent one dimensional PDEs
with homogeneous boundary conditions� Also Laplace�s equation in two variables was solved
in cartesian and polar coordinate systems� The eigenpairs of the Laplacian will be used here
to solve time dependent PDEs with two or three spatial variables� We will also discuss the
solution of Laplace�s equation in cylindrical and spherical coordinate systems� thus allowing
us to solve the heat and wave equations in those coordinate systems�

In the top part of the following table we list the various equations solved to this point�
In the bottom part we list the equations to be solved in this chapter�

Equation Type Comments
ut � kuxx heat �D constant coe�cients
c�x���x�ut � �K�x�ux�x heat �D
utt � c�uxx � � wave �D constant coe�cients
��x�utt � T��x�uxx � � wave �D
uxx � uyy � � Laplace �D constant coe�cients

ut � k�uxx � uyy� heat �D constant coe�cients
ut � k�uxx � uyy � uzz� heat 	D constant coe�cients
utt � c��uxx � uyy� � � wave �D constant coe�cients
utt � c��uxx � uyy � uzz� � � wave 	D constant coe�cients
uxx � uyy � uzz � � Laplace 	D Cartesian

�
r
�rur�r �

�
r�
u�� � uzz � � Laplace 	D Cylindrical

urr �
�
r
ur �

�
r�
u�� �

cot �
r�

u� �
�

r� sin� �
u�� � � Laplace 	D Spherical

���



	�� Heat Flow in a Rectangular Domain

In this section we solve the heat equation in two spatial variables inside a rectangle L by H�
The equation is

ut � k�uxx � uyy�� � � x � L� � � y � H� �������

u��� y� t� � �� �������

u�L� y� t� � �� �����	�

u�x� �� t� � �� �������

u�x�H� t� � �� �����
�

u�x� y� �� � f�x� y�� �������

Notice that the term in parentheses in ������� isr�u� Note also that we took Dirichlet bound�
ary conditions �i�e� speci�ed temperature on the boundary�� We can write this condition
as

u�x� y� t� � �� on the boundary �������

Other possible boundary conditions are left to the reader�
The method of separation of variables will proceed as follows �
�� Let

u�x� y� t� � T �t���x� y� �������

�� Substitute in ������� and separate the variables

"T� � kTr��

"T

kT
�
r��

�
� ��

	� Write the ODEs
"T �t� � k�T �t� � � �������

r��� �� � � ��������

�� Use the homogeneous boundary condition ������� to get the boundary condition associ�
ated with ��������

��x� y� � �� on the boundary ��������

The only question left is how to get the solution of �������� � ��������� This can be done in
a similar fashion to solving Laplace�s equation�
Let

��x� y� � X�x�Y �y�� ��������

then �������� � �������� yield � ODEs

X �� � �X � �� ������	�

X��� � X�L� � �� ��������

���



Y �� � ��� ��Y � �� ������
�

Y ��� � Y �H� � �� ��������

The boundary conditions �������� and �������� result from ������� � �����
�� Equation ������	�
has a solution

Xn � sin
n�

L
x� n � �� �� � � � ��������

�n �


n�

L

��
� n � �� �� � � � ��������

as we have seen in Chapter �� For each n� equation ������
� is solved the same way

Ymn � sin
m�

H
y� m � �� �� � � � � n � �� �� � � � ��������

�mn � �n �


m�

H

��
� m � �� �� � � � � n � �� �� � � � ��������

Therefore by �������� and ������������������

�mn�x� y� � sin
n�

L
x sin

m�

H
y� ��������

�mn �


n�

L

��
�


m�

H

��
� ��������

n � �� �� � � � � m � �� �� � � �

Using ������� and the principle of superposition� we can write the solution of ������� as

u�x� y� t� �
�X
n��

�X
m��

Amne
�kmnt sin

n�

L
x sin

m�

H
y� ������	�

where �mn is given by ���������
To �nd the coe�cients Amn� we use the initial condition �������� that is for t � � in ������	�
we get �

f�x� y� �
�X
n��

�X
m��

Amn sin
n�

L
x sin

m�

H
y� ��������

Amn are the generalized Fourier coe�cients �double Fourier series in this case�� We can
compute Amn by

Amn �

R L
�

RH
� f�x� y� sin n	

L
x sin m	

H
ydydxR L

�

RH
� sin� n	

L
x sin� m	

H
ydydx

� ������
�

�See next section��
Remarks �
i� Equation �������� is called Helmholtz equation�
ii� A more general form of the equation is

r � �p�x� y�r��x� y�� � q�x� y���x� y� � ���x� y���x� y� � � ��������

iii� A more general boundary condition is

���x� y���x� y� � ���x� y�r� � n � � on the boundary ��������

where n is a unit normal vector pointing outward� The special case �� � � yields ���������

���



Problems

�� Solve the heat equation

ut�x� y� t� � k �uxx�x� y� t� � uyy�x� y� t�� �

on the rectangle � � x � L� � � y � H subject to the initial condition

u�x� y� �� � f�x� y��

and the boundary conditions

a�
u��� y� t� � ux�L� y� t� � ��

u�x� �� t� � u�x�H� t� � ��

b�
ux��� y� t� � u�L� y� t� � ��

uy�x� �� t� � uy�x�H� t� � ��

c�
u��� y� t� � u�L� y� t� � ��

u�x� �� t� � uy�x�H� t� � ��

�� Solve the heat equation on a rectangular box

� � x � L� � � y � H� � � z � W�

ut�x� y� z� t� � k�uxx � uyy � uzz��

subject to the boundary conditions

u��� y� z� t� � u�L� y� z� t� � ��

u�x� �� z� t� � u�x�H� z� t� � ��

u�x� y� �� t� � u�x� y�W� t� � ��

and the initial condition
u�x� y� z� �� � f�x� y� z��

�
�



	�� Vibrations of a rectangular Membrane

The method of separation of variables in this case will lead to the same Helmholtz equation�
The only dierence is in the T equation� the problem to solve is as follows �

utt � c��uxx � uyy�� � � x � L� � � y � H� ���	���

u��� y� t� � �� ���	���

u�L� y� t� � �� ���	�	�

u�x� �� t� � �� ���	���

uy�x�H� t� � �� ���	�
�

u�x� y� �� � f�x� y�� ���	���

ut�x� y� �� � g�x� y�� ���	���

Clearly there are two initial conditions� ���	�������	���� since the PDE is second order in time�
We have decided to use a Neumann boundary condition at the top y � H� to show how the
solution of Helmholtz equation is aected�
The steps to follow are � �the reader is advised to compare these equations to ��������������
��

u�x� y� t� � T �t���x� y�� ���	���

'T

c�T
�
r��

�
� ��

'T � �c�T � �� ���	���

r��� �� � �� ���	����

����x� y� � ���y�x� y� � �� ���	����

where either �� or �� is zero depending on which side of the rectangle we are on�

��x� y� � X�x�Y �y�� ���	����

X �� � �X � �� ���	��	�

X��� � X�L� � �� ���	����

Y �� � ��� ��Y � �� ���	��
�

Y ��� � Y ��H� � �� ���	����

Xn � sin
n�

L
x� n � �� �� � � � ���	����

�n �


n�

L

��
� n � �� �� � � � ���	����

Ymn � sin
�m� �

�
��

H
y� m � �� �� � � � n � �� �� � � � ���	����

�
�



�mn �

�
�m� �

�
��

H

��

�


n�

L

��

� m � �� �� � � � n � �� �� � � � ���	����

Note the similarity of ���	�������	���� to the corresponding equations of section ����
The solution

u�x� y� t� �
�X

m��

�X
n��



Amn cos

q
�mnct�Bmn sin

q
�mnct

�
sin

n�

L
x sin

�m� �
�
��

H
y� ���	����

Since the T equation is of second order� we end up with two sets of parameters Amn and
Bmn� These can be found by using the two initial conditions ���	�������	����

f�x� y� �
�X
n��

�X
m��

Amn sin
n�

L
x sin

�m� �
�
��

H
y� ���	����

g�x� y� �
�X
n��

�X
m��

c
q
�mnBmn sin

n�

L
x sin

�m� �
�
��

H
y� ���	��	�

To get ���	��	� we need to evaluate ut from ���	���� and then substitute t � �� The coe��
cients are then

Amn �

R L
�

RH
� f�x� y� sin n	

L
x sin

�m� �
�
		

H
ydydxR L

�

RH
� sin� n	

L
x sin�

�m� �
�
		

H
ydydx

� ���	����

c
q
�mnBmn �

R L
�

RH
� g�x� y� sin n	

L
x sin

�m� �
�
		

H
ydydxR L

�

RH
� sin� n	

L
x sin�

�m� �
�
		

H
ydydx

� ���	��
�

�
�



Problems

�� Solve the wave equation

utt�x� y� t� � c� �uxx�x� y� t� � uyy�x� y� t�� �

on the rectangle � � x � L� � � y � H subject to the initial conditions

u�x� y� �� � f�x� y��

ut�x� y� �� � g�x� y��

and the boundary conditions

a�
u��� y� t� � ux�L� y� t� � ��

u�x� �� t� � u�x�H� t� � ��

b�
u��� y� t� � u�L� y� t� � ��

u�x� �� t� � u�x�H� t� � ��

c�
ux��� y� t� � u�L� y� t� � ��

uy�x� �� t� � uy�x�H� t� � ��

�� Solve the wave equation on a rectangular box

� � x � L� � � y � H� � � z � W�

utt�x� y� z� t� � c��uxx � uyy � uzz��

subject to the boundary conditions

u��� y� z� t� � u�L� y� z� t� � ��

u�x� �� z� t� � u�x�H� z� t� � ��

u�x� y� �� t� � u�x� y�W� t� � ��

and the initial conditions
u�x� y� z� �� � f�x� y� z��

ut�x� y� z� �� � g�x� y� z��

	� Solve the wave equation on an isosceles right�angle triangle with side of length a

utt�x� y� t� � c��uxx � uyy��

�
	



subject to the boundary conditions

u�x� �� t� � u��� y� t� � ��

u�x� y� t� � �� on the line x � y � a

and the initial conditions
u�x� y� �� � f�x� y��

ut�x� y� �� � g�x� y��

�
�



	�� Helmholtz Equation

As we have seen in this chapter� the method of separation of variables in two independent
variables leads to Helmholtz equation�

r��� �� � �

subject to the boundary conditions

����x� y� � ���x�x� y� � ���y�x� y� � ��

Here we state a result generalizing Sturm�Liouville�s from Chapter � of Neta�
Theorem�

�� All the eigenvalues are real�
�� There exists an in�nite number of eigenvalues� There is a smallest one but no largest�
	� Corresponding to each eigenvalue� there may be many eigenfunctions�
�� The eigenfunctions �i�x� y� form a complete set� i�e� any function f�x� y� can be

represented by

X
i

ai�i�x� y� �������

where the coe�cients ai are given by�

ai �

R R
�if�x� y�dxdyR R

��
idxdy

�������


� Eigenfunctions belonging to dierent eigenvalues are orthogonal�
�� An eigenvalue � can be related to the eigenfunction ��x� y� by Rayleigh quotient�

� �

R R
�r���dxdy � H �r� � ndsR R

��dxdy
�����	�

where
H

symbolizes integration on the boundary� For example� the following Helmholtz
problem �see ����������

r��� �� � �� � � x � L� � � y � H� �������

� � �� on the boundary� �����
�

was solved and we found

�mn �


n�

L

��
�


m�

H

��

� n � �� �� � � � � m � �� �� � � � �������

�mn�x� y� � sin
n�

L
x sin

m�

H
y� n � �� �� � � � � m � �� �� � � � �������

Clearly all the eigenvalues are real� The smallest one is ��� �
�
	
L

	�
�
�
	
H

	�
� �mn � �

as n and m � �� There may be multiple eigenfunctions in some cases� For example� if

�





L � �H then ��� � ��� but the eigenfunctions ��� and ��� are dierent� The coe�cients of
expansion are

amn �

R L
�

RH
� f�x� y��mndxdyR L
�

RH
� ��

mndxdy
�������

as given by ������
��

�
�



Problems

�� Solve
r��� �� � � ��� ��� ��� ����

subject to
���� y� � �

�x��� y� � �

��x� �� � �

�y�x� ���� � ��

Show that the results of the theorem are true�

�� Solve Helmholtz equation on an isosceles right�angle triangle with side of length a

uxx � uyy � �u � ��

subject to the boundary conditions

u�x� �� t� � u��� y� t� � ��

u�x� y� t� � �� on the line x� y � a�

�
�



	�� Vibrating Circular Membrane

In this section� we discuss the solution of the wave equation inside a circle� As we have
seen in sections ��� and ��	� there is a similarity between the solution of the heat and wave
equations� Thus we will leave the solution of the heat equation to the exercises�

The problem is�

utt�r� �� t� � c�r�u� � � r � a� � � � � ��� t � � ���
���

subject to the boundary condition

u�a� �� t� � �� �clamped membrane� ���
���

and the initial conditions
u�r� �� �� � ��r� ��� ���
�	�

ut�r� �� �� � ��r� ��� ���
���

The method of separation of variables leads to the same set of dierential equations

'T �t� � �c�T � �� ���
�
�

r��� �� � �� ���
���

��a� �� � �� ���
���

Note that in polar coordinates

r�� �
�

r

�

�r

�
r
��

�r

�
�

�

r�
���

���
���
���

Separating the variables in the Helmholtz equation ���
��� we have

��r� �� � R�r�#���� ���
���

#�� � �# � � ���
����

d

dr

�
r
dR

dr

�
�


�r � �

r

�
R � �� ���
����

The boundary equation ���
��� yields

R�a� � �� ���
����

What are the other boundary conditions� Check the solution of Laplace�s equation inside a
circle�

#��� � #����� �periodicity� ���
��	�

#���� � #������ ���
����

�
�



jR���j �� �boundedness� ���
��
�

The equation for #��� can be solved �see Chapter ��

�m � m� m � �� �� �� � � � ���
����

#m �

�
sinm�
cosm� m � �� �� �� � � �

���
����

In the rest of this section� we discuss the solution of ���
���� subject to ���
����� ���
��
��
After substituting the eigenvalues �m from ���
����� we have

d

dr

�
r
dRm

dr

�
�

�
�r � m�

r

�
Rm � � ���
����

jRm���j �� ���
����

Rm�a� � �� ���
����

Using Rayleight quotient for this singular Sturm�Liouville problem� we can show that � � ��
thus we can make the transformation

� �
p
�r ���
����

which will yield Bessel�s equation

��
d�R���

d��
� �

dR���

d�
�
�
�� �m�

	
R��� � � ���
����

Consulting a textbook on the solution of Ordinary Dierential Equations� we �nd�

Rm��� � C�mJm��� � C�mYm��� ���
��	�

where Jm� Ym are Bessel functions of the �rst� second kind of order m respectively� Since we
are interested in a solution satisftying ���
��
�� we should note that near � � �

Jm��� 	
�

� m � �
�

�mm�
�m m � �

���
����

Ym��� 	
�

�
	
ln � m � �

��m�m��	�
	

�
�m

m � ��
���
��
�

Thus C�m � � is necessary to achieve boundedness� Thus

Rm�r� � C�mJm�
p
�r�� ���
����

In �gure �� we have plotted the Bessel functions J� through J� Note that all Jn start at
� except J� and all the functions cross the axis in�nitely many times� In �gure 
� we have
plotted the Bessel functions �also called Neumann functions� Y� through Y� Note that the
vertical axis is through x � 	 and so it is not so clear that Yn tend to �� as x� ��

�
�
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Figure ��� Bessel functions Jn� n � �� � � � � 


To satisfy the boundary condition ���
���� we get an equation for the eigenvalues �

Jm�
p
�a� � �� ���
����

There are in�nitely many solutions of ���
���� for any m� We denote these solutions by

�mn �
q
�mna m � �� �� �� � � � n � �� �� � � � ���
����

Thus

�mn �

�
�mn

a

��

� ���
����

Rmn�r� � Jm

�
�mn

a
r

�
� ���
�	��

We leave it as an exercise to show that the general solution to ���
��� � ���
��� is given by

u�r� �� t� �
�X

m��

�X
n��

Jm

�
�mn

a
r

�
famn cosm� � bmn sinm�g

�
Amn cos c

�mn

a
t�Bmn sin c

�mn

a
t

�
���
�	��

We will �nd the coe�cients by using the initial conditions ���
�	�����
���

��r� �� �
�X

m��

�X
n��

Jm

�
�mn

a
r

�
Amn famn cosm� � bmn sinm�g ���
�	��

���
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��r� �� �
�X

m��

�X
n��

Jm

�
�mn

a
r

�
c
�mn

a
Bmn famn cosm� � bmn sinm�g � ���
�		�

Amnamn �

R �	
�

R a
� ��r� ��Jm

�
�mn

a
r
	
cosm�rdrd�R �	

�

R a
� J

�
m

�
�mn

a
r
	
cos�m�rdrd�

� ���
�	��

c
�mn

a
Bmnamn �

R �	
�

R a
� ��r� ��Jm

�
�mn

a
r
	
cosm�rdrd�R �	

�

R a
� J

�
m

�
�mn

a
r
	
cos�m�rdrd�

� ���
�	
�

Replacing cosm� by sinm� we get Amnbmn and c �mn

a
Bmnbmn�

Remarks
�� Note the weight r in the integration� It comes from having � multiplied by r in

���
�����
�� We are computing the four required combinations Amnamn� Amnbmn� Bmnamn� and

Bmnbmn� We do not need to �nd Amn or Bmn and so on�

Example�
Solve the circularly symmetric case

utt�r� t� �
c�

r

�

�r

�
r
�u

�r

�
� ���
�	��

u�a� t� � �� ���
�	��

���



u�r� �� � ��r�� ���
�	��

ut�r� �� � ��r�� ���
�	��

The reader can easily show that the separation of variables give

'T � �c�T � �� ���
����

d

dr

�
r
dR

dr

�
� �rR � �� ���
����

R�a� � �� ���
����

jR���j ��� ���
��	�

Since there is no dependence on � � the r equation will have no �� or which is the same
m � �� Thus

R��r� � J��
q
�nr� ���
����

where the eigenvalues �n are computed from

J��
q
�na� � �� ���
��
�

The general solution is

u�r� t� �
�X
n��

anJ��
q
�nr� cos c

q
�nt� bnJ��

q
�nr� sin c

q
�nt� ���
����

The coe�cients an� bn are given by

an �

R a
� J��

p
�nr���r�rdrR a

� J
�
� �
p
�nr�rdr

� ���
����

bn �

R a
� J��

p
�nr���r�rdr

c
p
�n
R a
� J

�
� �
p
�nr�rdr

� ���
����

���



Problems

�� Solve the heat equation

ut�r� �� t� � kr�u� � � r � a� � � � � ��� t � �

subject to the boundary condition

u�a� �� t� � � �zero temperature on the boundary�

and the initial condition
u�r� �� �� � ��r� ���

�� Solve the wave equation

utt�r� t� � c��urr �
�

r
ur��

ur�a� t� � ��

u�r� �� � ��r��

ut�r� �� � ��

Show the details�

	� Consult numerical analysis textbook to obtain the smallest eigenvalue of the above
problem�

�� Solve the wave equation

utt�r� �� t�� c�r�u � �� � � r � a� � � � � ��� t � �

subject to the boundary condition
ur�a� �� t� � �

and the initial conditions
u�r� �� �� � ��

ut�r� �� �� � ��r� cos 
��


� Solve the wave equation

utt�r� �� t�� c�r�u � �� � � r � a� � � � � ���� t � �

subject to the boundary conditions

u�a� �� t� � u�r� �� t� � u�r� ���� t� � � �zero displacement on the boundary�

and the initial conditions
u�r� �� �� � ��r� ���

ut�r� �� �� � ��

��	



	�� Laplace�s Equation in a Circular Cylinder

Laplace�s equation in cylindrical coordinates is given by�

�

r
�rur�r �

�

r�
u�� � uzz � �� � � r � a� � � z � H� � � � � ��� �������

The boundary conditions we discuss here are�

u�r� �� �� � ��r� ��� on bottom of cylinder� �������

u�r� ��H� � ��r� ��� on top of cylinder� �����	�

u�a� �� z� � ���� z�� on lateral surface of cylinder� �������

Similar methods can be employed if the boundary conditions are not of Dirichlet type �see
exercises��

As we have done previously with Laplace�s equation� we use the principle of superposition
to get two homogenous boundary conditions� Thus we have the following three problems to
solve� each dier from the others in the boundary conditions�
Problem ��

�

r
�rur�r �

�

r�
u�� � uzz � �� �����
�

u�r� �� �� � �� �������

u�r� ��H� � ��r� ��� �������

u�a� �� z� � �� �������

Problem ��
�

r
�rur�r �

�

r�
u�� � uzz � �� �������

u�r� �� �� � ��r� ��� ��������

u�r� ��H� � �� ��������

u�a� �� z� � �� ��������

Problem 	�
�

r
�rur�r �

�

r�
u�� � uzz � �� ������	�

u�r� �� �� � �� ��������

u�r� ��H� � �� ������
�

u�a� �� z� � ���� z�� ��������

Since the PDE is the same in all three problems� we get the same set of ODEs

#�� � �# � �� ��������

���



Z �� � �Z � �� ��������

r�rR��� � ��r� � ��R � �� ��������

Recalling Laplace�s equation in polar coordinates� the boundary conditions associated with
�������� are

#��� � #����� ��������

#���� � #������ ��������

and one of the boundary conditions for �������� is

jR���j ��� ��������

The other boundary conditions depend on which of the three we are solving� For problem
�� we have

Z��� � �� ������	�

R�a� � �� ��������

Clearly� the equation for # can be solved yielding

�m � m�� m�������� � � ������
�

#m �

�
sinm�
cosm��

��������

Now the R equation is solvable

R�r� � Jm�
q
�mnr�� ��������

where �mn are found from �������� or equivalently

Jm�
q
�mna� � �� n�����	�� � � ��������

Since � � � �related to the zeros of Bessel�s functions�� then the Z equation has the solution

Z�z� � sinh
q
�mnz� ��������

Combining the solutions of the ODEs� we have for problem ��

u�r� �� z� �
�X

m��

�X
n��

sinh
q
�mnzJm�

q
�mnr� �Amn cosm� �Bmn sinm�� � �����	��

��




where Amn and Bmn can be found from the generalized Fourier series of ��r� ���
The second problem follows the same pattern� replacing ������	� by

Z�H� � �� �����	��

leading to

u�r� �� z� �
�X

m��

�X
n��

sinh

q

�mn�z �H�
�
Jm�

q
�mnr� �Cmn cosm� �Dmn sinm�� � �����	��

where Cmn and Dmn can be found from the generalized Fourier series of ��r� ���
The third problem is slightly dierent� Since there is only one boundary condition for R� we
must solve the Z equation �������� before we solve the R equation� The boundary conditions
for the Z equation are

Z��� � Z�H� � �� �����		�

which result from �������������
�� The solution of ��������� �����		� is

Zn � sin
n�

H
z� n � �� �� � � � �����	��

The eigenvalues

�n �


n�

H

��
� n � �� �� � � � �����	
�

should be substituted in the R equation to yield

r�rR��� �
�


n�

H

��
r� �m�

�
R � �� �����	��

This equation looks like Bessel�s equation but with the wrong sign in front of r� term� It is
called the modi�ed Bessel�s equation and has a solution

R�r� � c�Im



n�

H
r
�
� c�Km



n�

H
r
�
� �����	��

The modi�ed Bessel functions of the �rst �Im� also called hyperbolic Bessel functions� and
the second �Km� also called Bassett functions� kinds behave at zero and in�nity similar to
Jm and Ym respectively� In �gure 
� we have plotted the Bessel functions I� through I� In
�gure 
� we have plotted the Bessel functions Kn� n � �� �� �� 	� Note that the vertical axis
is through x � �� and so it is not so clear that Kn tend to � as x� ��

Therefore the solution to the third problem is

u�r� �� z� �
�X

m��

�X
n��

sin
n�

H
zIm�

n�

H
r� �Emn cosm� � Fmn sinm�� � �����	��

where Emn and Fmn can be found from the generalized Fourier series of ���� z�� The solution
of the original problem ������������� is the sum of the solutions given by �����	��� �����	��
and �����	���

���
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Problems

�� Solve Laplace�s equation

�

r
�rur�r �

�

r�
u�� � uzz � �� � � r � a� � � � � ��� � � z � H

subject to each of the boundary conditions

a�
u�r� �� �� � ��r� ��

u�r� ��H� � u�a� �� z� � �

b�
u�r� �� �� � u�r� ��H� � �

ur�a� �� z� � ���� z�

c�
uz�r� �� �� � ��r� ��

u�r� ��H� � u�a� �� z� � �

d�
u�r� �� �� � uz�r� ��H� � �

ur�a� �� z� � ��z�

�� Solve Laplace�s equation

�

r
�rur�r �

�

r�
u�� � uzz � �� � � r � a� � � � � �� � � z � H

subject to the boundary conditions

u�r� �� �� � ��

uz�r� ��H� � ��

u�r� �� z� � u�r� �� z� � ��

u�a� �� z� � ���� z��

	� Find the solution to the following steady state heat conduction problem in a box

r�u � �� � � x � L� � � y � L� � � z � W�

subject to the boundary conditions

�u

�x
� �� x � �� x � L�

���



�u

�y
� �� y � �� y � L�

u�x� y�W � � ��

u�x� y� �� � � cos
	�

L
x cos

��

L
y�

�� Find the solution to the following steady state heat conduction problem in a box

r�u � �� � � x � L� � � y � L� � � z � W�

subject to the boundary conditions

�u

�x
� �� x � �� x � L�

�u

�y
� �� y � �� y � L�

uz�x� y�W � � ��

uz�x� y� �� � � cos
	�

L
x cos

��

L
y�


� Solve the heat equation inside a cylinder

�u

�t
�

�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���
�
��u

�z�
� � � r � a� � � � � ��� � � z � H

subject to the boundary conditions

u�r� �� �� t� � u�r� ��H� t� � ��

u�a� �� z� t� � ��

and the initial condition
u�r� �� z� �� � f�r� �� z��

���



	�	 Laplace�s equation in a sphere

Laplace�s equation in spherical coordinates is given in the form

urr �
�

r
ur �

�

r�
u�� �

cot �

r�
u� �

�

r� sin� �
u�� � �� � � r � a� � � � � �� � � 
 � �� �

�������


 is the longitude and
�

�
� � is the latitude� Suppose the boundary condition is

u�a� �� 
� � f��� 
� � �������

To solve by the method of separation of variables we assume a solution u�r� �� 
� in the form

u�r� �� 
� � R�r�#���(�
� � �����	�

Substitution in Laplace�s equation yields



R�� �

�

r
R�
�
#(�

�

r�
R#��( �

cot �

r�
#�R( �

�

r� sin� �
R#(�� � �

Multiplying by
r� sin� �

R#(
� we can separate the 
 dependence�

r� sin� �

�
R��

R
�

�

r

R�

R
�

�

r�
#��

#
�

cot �

r�
#�

#

�
� �(��

(
� � �

Now the ODE for 
 is
(�� � �( � � �������

and the equation for r� � can be separated by dividing through by sin� �

r�
R��

R
� �r

R�

R
�

#��

#
� cot �

#�

#
�

�

sin� �
�

Keeping the �rst two terms on the left� we have

r�
R��

R
� �r

R�

R
� �#��

#
� cot �

#�

#
�

�

sin� �
� � �

Thus
r�R�� � �rR� � �R � � �����
�

and
#�� � cot �#� � �

sin� �
#� �# � � �

The equation for # can be written as follows

sin� �#�� � sin � cos �#� � �� sin� � � ��# � � � �������

���



What are the boundary conditions� Clearly� we have periodicity of (� i�e�

(��� � (���� �������

(���� � (����� � �������

The solution R�r� must be �nite at zero� i�e�

jR���j �� �������

as we have seen in other problems on a circular domain that include the pole� r � ��
Thus we can solve the ODE ������� subject to the conditions ������� � �������� This yields
the eigenvalues

�m � m� m � �� �� �� � � � ��������

and eigenfunctions

(m �

�
cosm

sinm


m � �� �� � � � ��������

and
(� � �� ��������

We can solve �����
� which is Euler�s equation� by trying

R�r� � r� ������	�

yielding a characteristic equation

�� � �� � � � � ��������

The solutions of the characteristic equation are

��
 � �
���p� � ��

�
� ������
�

Thus if we take

�� �
�� �p� � ��

�
��������

then
�� � ��� � ��� ��������

and
� � ���� � ��� � ��������

�Recall that the sum of the roots equals the negative of the coe�cient of the linear term and
the product of the roots equals the constant term�� Therefore the solution is

R�r� � Cr�� �Dr����
�	 ��������

���



Using the boundedness condition ������� we must have D � � and the solution of �����
�
becomes

R�r� � Cr�� � ��������

Substituting � and � from �������� and �������� into the third ODE �������� we have

sin� �#�� � sin � cos �#� �
�
���� � ��� sin

� � �m�
	
# � � � ��������

Now� lets make the transformation
� � cos � ��������

then
d#

d�
�
d#

d�

d�

d�
� � sin �

d#

d�
������	�

and
d�#

d��
� � d

d�

�
sin �

d#

d�

�

� � cos �
d#

d�
� sin �

d�#

d��
d�

d�

� � cos �
d#

d�
� sin� �

d�#

d��
�

��������

Substitute �������� � �������� in �������� we have

sin� �
d�#

d��
� sin� � cos �

d#

d�
� sin� � cos �

d#

d�
�
�
���� � ��� sin

� � �m�
	
# � � �

Divide through by sin� � and use ��������� we get

��� ���#�� � ��#� �

�
���� � ���� m�

�� ��

�
# � � � ������
�

This is the so�called associated Legendre equation�
For m � �� the equation is called Legendre�s equation� Using power series method of

solution� one can show that Legendre�s equation �see e�g� Pinsky �������

��� ���#�� � ��#� � ���� � ���# � � � ��������

has a solution

#��� �
�X
i��

ai�
i � ��������

where

ai
� �
i�i� ��� ���� � ���

�i� ���i� ��
ai � i � �� �� �� � � � � ��������

and a�� a� may be chosen arbitrarily�

���
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If �� is an integer n� then the recurrence relation �������� shows that one of the solutions
is a polynomial of degree n� �If n is even� choose a� � �� a� �� � and if n is odd� choose
a� � �� a� �� ��� This polynomial is denoted by Pn���� The �rst four Legendre polynomials
are

P� � �

P� � �

P� �
	

�
�� � �

�

P� �



�
�� � 	

�
�

P� �
	


�
�� � 	�

�
�� �

	

�
�

��������

In �gure 
	� we have plotted the �rst � Legendre polynomials� The orthogonality of Legendre
polynomials can be easily shownZ �

��
Pn���P����d� � �� for n �� � �����	��

or Z 	

�
Pn�cos ��P��cos �� sin �d� � �� for n �� � � �����	��

��	
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The other solution is not a polynomial and denoted by Qn���� In fact these functions can
be written in terms of inverse hyperbolic tangent�

Q� � tanh�� �

Q� � � tanh�� � � �

Q� �
	�� � �

�
tanh�� � � 	�

�

Q� �

�� � 	�

�
tanh�� � � �
�� � �

�
�

�����	��

Now back to ������
�� dierentiating �������� m times with respect to �� one has ������
��
Therefore� one solution is

Pm
n �cos �� � sinm �

dm

d�m
Pn�cos ��� for m � n �����		�

or in terms of �

Pm
n ��� � ��� ���m�� d

m

d�m
Pn���� for m � n �����	��

which are the associated Legendre polynomials� The other solution is

Qm
n ��� � ��� ���m�� d

m

d�m
Qn���� �����	
�

���



The general solution is then

#nm��� � APm
n �cos �� �BQm

n �cos ��� n � �� �� �� � � � �����	��

Since Qm
n has a logarithmic singularity at � � �� we must have B � �� Therefore� the

solution becomes
#nm��� � APm

n �cos �� � �����	��

Combining ��������� ��������� �������� and �����	�� we can write

u�r� �� 
� �
P�

n��An�r
nPn�cos ��

�
P�

n��

Pn
m�� r

nPm
n �cos ���Anm cosm
 �Bmn sinm
��

�����	��

where Pn�cos �� � P �
n�cos �� are Legendre polynomials� The boundary condition �������

implies

f��� 
� �
�X
n��

An�a
nPn�cos ��

�
�X
n��

nX
m��

anPm
n �cos ���Anm cosm
�Bmn sinm
� �

�����	��

The coe�cients An�� Anm� Bnm can be obtained from

An� �

R �	
�

R 	
� f��� 
�Pn�cos �� sin �d�d


��anI�
��������

Anm �

R �	
�

R 	
� f��� 
�Pm

n �cos �� cosm
 sin �d�d


�anIm
��������

Bnm �

R �	
�

R 	
� f��� 
�Pm

n �cos �� sinm
 sin �d�d


�anIm
��������

where

Im �
Z 	

�
�Pm

n �cos ���� sin �d�

�
��n�m��

��n� ���n�m��
�

������	�

��




Problems

�� Solve Laplace�s equation on the sphere

urr �
�

r
ur �

�

r�
u�� �

cot �

r�
u� �

�

r� sin� �
u�� � �� � � r � a� � � � � �� � � 
 � ���

subject to the boundary condition

ur�a� �� 
� � f����

�� Solve Laplace�s equation on the half sphere

urr �
�

r
ur �

�

r�
u�� �

cot �

r�
u� �

�

r� sin� �
u�� � �� � � r � a� � � � � �� � � 
 � ��

subject to the boundary conditions

u�a� �� 
� � f��� 
��

u�r� �� �� � u�r� �� �� � ��

	� Solve Laplace�s equation on the surface of the sphere of radius a�

���



SUMMARY
Heat Equation

ut � k�uxx � uyy�

ut � k�uxx � uyy � uzz�

ut � k

�
�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���

�

Wave equation
utt � c��uxx � uyy� � �

utt � c��uxx � uyy � uzz� � �

utt � c�
�
�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���

�

Laplace�s Equation
uxx � uyy � uzz � �

�

r
�rur�r �

�

r�
u�� � uzz � �

urr �
�

r
ur �

�

r�
u�� �

cot �

r�
u� �

�

r� sin� �
u�� � �

Bessel�s Equation �inside a circle�

�rR�
m�

� �

�
�r � m�

r

�
Rm � �� m � �� �� �� � � �

jRm���j ��
Rm�a� � �

Rm�r� � Jm


q
�mnr

�
eigenfunctions

Jm


q
�mna

�
� � equation for eigenvalues�

Bessel�s Equation �outside a circle�

�rR�
m�

� �

�
�r � m�

r

�
Rm � �� m � �� �� �� � � �

Rm � � as r��
Rm�a� � �

Rm�r� � Ym


q
�mnr

�
eigenfunctions

Ym


q
�mna

�
� � equation for eigenvalues�

���



Modi�ed Bessel�s Equation

�rR�
m�

� �
�
��r �

m�

r

�
Rm � �� m � �� �� �� � � �

jRm���j ��
Rm�r� � C�mIm ��r� � C�mKm��r�

Legendre�s Equation
��� ���#�� � ��#� � ��� � ��# � �

#��� � C�Pn��� � C�Qn���

� � n

Associated Legendre Equation

��� ���#�� � ��#� �

�
��� � ��� m�

�� ��

�
# � �

#��� � C�P
m
n ��� � C�Q

m
n ���

� � n

���




 Separation of Variables�Nonhomogeneous Problems

In this chapter� we show how to solve nonhomogeneous problems via the separation of
variables method� The �rst section will show how to deal with inhomogeneous boundary
conditions� The second section will present the method of eigenfunctions expansion for the
inhomogeneous heat equation in one space variable� The third section will give the solution
of the wave equation in two dimensions� We close the chapter with the solution of Poisson�s
equation�

��� Inhomogeneous Boundary Conditions

Consider the following inhomogeneous heat conduction problem�

ut � kuxx � S�x� t�� � � x � L �������

subject to the inhomogeneous boundary conditions

u��� t� � A�t�� �������

u�L� t� � B�t�� �����	�

and an initial condition
u�x� �� � f�x�� �������

Find a function w�x� t� satisfying the boundary conditions �������������	�� It is easy to see
that

w�x� t� � A�t� �
x

L
�B�t�� A�t�� �����
�

is one such function�
Let

v�x� t� � u�x� t�� w�x� t� �������

then clearly
v��� t� � u��� t�� w��� t� � A�t�� A�t� � � �������

v�L� t� � u�L� t�� w�L� t� � B�t�� B�t� � � �������

i�e� the function v�x� t� satis�es homogeneous boundary conditions� The question is� what
is the PDE satis�ed by v�x� t�� To this end� we dierentiate ������� twice with respect to x
and once with respect to t

vx�x� t� � ux � �

L
�B�t�� A�t�� �������

vxx � uxx � � � uxx ��������

vt�x� t� � ut � x

L

�
"B�t�� "A�t�

	
� "A�t� ��������

���



and substitute in �������

vt � "A�t� �
x

L

�
"B�t�� "A�t�

	
� kvxx � S�x� t�� ��������

Thus
vt � kvxx � )S�x� t� ������	�

where
)S�x� t� � S�x� t�� "A�t�� x

L

�
"B�t�� "A�t�

	
� ��������

The initial condition ������� becomes

v�x� �� � f�x�� A���� x

L
�B���� A���� � )f�x�� ������
�

Therefore� we have to solve an inhomogeneous PDE ������	� subject to homogeneous bound�
ary conditions��������������� and the initial condition ������
��

If the boundary conditions were of a dierent type� the idea will still be the same� For
example� if

u��� t� � A�t� ��������

ux�L� t� � B�t� ��������

then we try
w�x� t� � ��t�x� ��t�� ��������

At x � ��
A�t� � w��� t� � ��t�

and at x � L�
B�t� � wx�L� t� � ��t��

Thus
w�x� t� � B�t�x � A�t� ��������

satis�es the boundary conditions ������������������
Remark� If the boundary conditions are independent of time� we can take the steady

state solution as w�x��

���



Problems

�� For each of the following problems obtain the function w�x� t� that satis�es the boundary
conditions and obtain the PDE

a�
ut�x� t� � kuxx�x� t� � x� � � x � L

ux��� t� � ��

u�L� t� � t�

b�
ut�x� t� � kuxx�x� t� � x� � � x � L

u��� t� � ��

ux�L� t� � ��

c�
ut�x� t� � kuxx�x� t� � x� � � x � L

ux��� t� � t�

ux�L� t� � t��

�� Same as problem � for the wave equation

utt � c�uxx � xt� � � x � L

subject to each of the boundary conditions

a�
u��� t� � � u�L� t� � t

b�
ux��� t� � t ux�L� t� � t�

c�
u��� t� � � ux�L� t� � t

d�
ux��� t� � � ux�L� t� � �

���



��� Method of Eigenfunction Expansions

In this section� we consider the solution of the inhomogeneous heat equation

ut � kuxx � S�x� t�� � � x � L �������

u��� t� � �� �������

u�L� t� � �� �����	�

u�x� �� � f�x�� �������

The solution of the homogeneous PDE leads to the eigenfunctions

�n�x� � sin
n�

L
x� n � �� �� � � � �����
�

and eigenvalues

�n �


n�

L

��
� n � �� �� � � � �������

Clearly the eigenfunctions depend on the boundary conditions and the PDE� Having the
eigenfunctions� we now expand the source term

S�x� t� �
�X
n��

sn�t��n�x�� �������

where

sn�t� �

R L
� S�x� t��n�x�dxR L

� ��
n�x�dx

� �������

Let

u�x� t� �
�X
n��

un�t��n�x�� �������

then

f�x� � u�x� �� �
�X
n��

un����n�x�� ��������

Since f�x� is known� we have

un��� �

R L
� f�x��n�x�dxR L

� ��
n�x�dx

� ��������

Substitute u�x� t� from ������� and its derivatives and S�x� t� from ������� into �������� we
have �X

n��

"un�t��n�x� �
�X
n��

��k�n�un�t��n�x� �
�X
n��

sn�t��n�x�� ��������

Recall that uxx gives a series with ���n�x� which is ��n�n� since �n are the eigenvalues corre�
sponding to �n� Combining all three sums in ��������� one has

�X
n��

f "un�t� � k�nun�t�� sn�t�g�n�x� � �� ������	�

���



Therefore
"un�t� � k�nun�t� � sn�t�� n � �� �� � � � ��������

This inhomogeneous ODE should be combined with the initial condition ���������
The solution of ��������� �������� is obtained by the method of variation of parameters

�see e�g� Boyce and DiPrima�

un�t� � un���e
�nkt �

Z t

�
sn���e

�nk�t��	d�� ������
�

It is easy to see that un�t� above satis�es �������� and ��������� We summarize the solution
by ��������������
���������� and ��������

Example
ut � uxx � �� � � x � � ��������

ux��� t� � �� ��������

u��� t� � �� ��������

u�x� �� � x��� x�� ��������

The function w�x� t� to satisfy the inhomogeneous boundary conditions is

w�x� t� � �x� �� ��������

The function
v�x� t� � u�x� t�� w�x� t� ��������

satis�es the following PDE
vt � vxx � �� ��������

since wt � wxx � �� The initial condition is

v�x� �� � x��� x�� ��x� �� � x��� x� � ���� x� � �x � ����� x� ������	�

and the homogeneous boundary conditions are

vx��� t� � �� ��������

v��� t� � �� ������
�

The eigenfunctions �n�x� and eigenvalues �n satisfy

���n�x� � �n�n � �� ��������

��n��� � �� ��������

�n��� � �� ��������

Thus

�n�x� � cos�n� �

�
��x� n � �� �� � � � ��������

��	



�n �
�
�n� �

�
��
��
� �����	��

Expanding S�x� t� � � and v�x� t� in these eigenfunctions we have

� �
�X
n��

sn�n�x� �����	��

where

sn �

R �
� � � cos�n� �

�
��xdxR �

� cos��n� �
�
��xdx

�
�����n��

��n� ���
� �����	��

and

v�x� t� �
�X
n��

vn�t� cos�n� �

�
��x� �����		�

The partial derivatives of v�x� t� required are

vt�x� t� �
�X
n��

"vn�t� cos�n� �

�
��x� �����	��

vxx�x� t� � �
�X
n��

�
�n� �

�
��
��
vn�t� cos�n� �

�
��x� �����	
�

Thus� upon substituting �����	��������	
� and �����	�� into ��������� we get

"vn�t� �
�
�n� �

�
��
��
vn�t� � sn� �����	��

The initial condition vn��� is given by the eigenfunction expansion of v�x� ��� i�e�

�x � ����� x� �
�X
n��

vn��� cos�n� �

�
��x �����	��

so

vn��� �

R �
� �x � ����� x� cos�n� �

�
��xdxR �

� cos��n� �
�
��xdx

� �����	��

The solution of �����	�� is

vn�t� � vn���e
���n� �

�
		�

�
t � sn

Z t

�
e���n�

�
�
		�

�
�t��	d�

Performing the integration

vn�t� � vn���e
���n� �

�
		�

�
t � sn

�� e���n�
�
�
		�

�
th

�n� �
�
��
i� �����	��

where vn���� sn are given by �����	�� and �����	�� respectively�

���



Problems

�� Solve the heat equation

ut � kuxx � x� � � x � L

subject to the initial condition
u�x� �� � x�L� x�

and each of the boundary conditions

a�
ux��� t� � ��

u�L� t� � t�

b�
u��� t� � ��

ux�L� t� � ��

c�
ux��� t� � t�

ux�L� t� � t��

�� Solve the heat equation

ut � uxx � e�t� � � x � �� t � ��

subject to the initial condition

u�x� �� � cos �x� � � x � ��

and the boundary condition
ux��� t� � ux��� t� � ��

��




��� Forced Vibrations

In this section we solve the inhomogeneous wave equation in two dimensions describing the
forced vibrations of a membrane�

utt � c�r�u� S�x� y� t� ���	���

subject to the boundary condition

u�x� y� t� � �� on the boundary� ���	���

and initial conditions
u�x� y� �� � ��x� y�� ���	�	�

ut�x� y� �� � ��x� y�� ���	���

Since the boundary condition is homogeneous� we can expand the solution u�x� y� t� and the
forcing term S�x� y� t� in terms of the eigenfunctions �n�x� y�� i�e�

u�x� y� t� �
�X
i��

ui�t��i�x� y�� ���	�
�

S�x� y� t� �
�X
i��

si�t��i�x� y�� ���	���

where
r��i � ��i�i� ���	���

�i � �� on the boundary� ���	���

and

si�t� �

R R
S�x� y� t��i�x� y�dxdyR R

��
i �x� y�dxdy

� ���	���

Substituting ���	�
�����	��� into ���	��� we have
�X
i��

'ui�t��i�x� y� � c�
�X
i��

ui�t�r��i �
�X
i��

si�t��i�x� y��

Using ���	��� and combining all the sums� we get an ODE for the coe�cients ui�t��

'ui�t� � c��iui�t� � si�t�� ���	����

The solution can be found in any ODE book�

ui�t� � c� cos c
q
�it� c� sin c

q
�it�

Z t

�
si���

sin c
p
�i�t� ��

c
p
�i

d�� ���	����

The initial conditions ���	�	�����	��� imply

ui��� � c� �

R R
��x� y��i�x� y�dxdyR R

��
i �x� y�dxdy

� ���	����

"ui��� � c�c
q
�i �

R R
��x� y��i�x� y�dxdyR R

��
i �x� y�dxdy

� ���	��	�

Equations ���	��������	��	� can be solved for c� and c�� Thus the solution u�x� y� t� is given
by ���	�
� with ui�t� given by ���	��������	��	� and si�t� are given by ���	����

���



	���� Periodic Forcing

If the forcing S�x� y� t� is a periodic function in time� we have an interesting case� Suppose

S�x� y� t� � ��x� y� cos�t� ���	�����

then by ���	��� we have
si�t� � �i cos�t� ���	�����

where

�i�t� �

R R
��x� y��i�x� y�dxdyR R

��
i �x� y�dxdy

� ���	���	�

The ODE for the unknown ui�t� becomes

'ui�t� � c��iui�t� � �i cos�t� ���	�����

In this case the particular solution of the nonhomogeneous is

�i
c��i � ��

cos�t ���	���
�

and thus
ui�t� � c� cos c

q
�it� c� sin c

q
�it�

�i
c��i � ��

cos�t� ���	�����

The amplitude ui�t� of the mode �i�x� y� is decomposed to a vibration at the natural fre�
quency c

p
�i and a vibration at the forcing frequency �� What happens if � is one of the

natural frequencies� i�e�

� � c
q
�i for some i� ���	�����

Then the denominator in ���	����� vanishes� The particular solution should not be ���	���
�
but rather

�i
��

t sin�t� ���	�����

The amplitude is growing linearly in t� This is called resonance�

���



Problems

�� Consider a vibrating string with time dependent forcing

utt � c�uxx � S�x� t�� � � x � L

subject to the initial conditions
u�x� �� � f�x��

ut�x� �� � ��

and the boundary conditions
u��� t� � u�L� t� � ��

a� Solve the initial value problem�

b� Solve the initial value problem if S�x� t� � cos�t� For what values of � does resonance
occur�

�� Consider the following damped wave equation

utt � c�uxx � �ut � cos�t� � � x � ��

subject to the initial conditions
u�x� �� � f�x��

ut�x� �� � ��

and the boundary conditions
u��� t� � u��� t� � ��

Solve the problem if � is small �� � � � �c��

	� Solve the following
utt � c�uxx � S�x� t�� � � x � L

subject to the initial conditions
u�x� �� � f�x��

ut�x� �� � ��

and each of the following boundary conditions

a�
u��� t� � A�t� u�L� t� � B�t�

b�
u��� t� � � ux�L� t� � �

c�
ux��� t� � A�t� u�L� t� � ��

���



�� Solve the wave equation

utt � c�uxx � xt� � � x � L�

subject to the initial conditions
u�x� �� � sin x

ut�x� �� � �

and each of the boundary conditions

a�
u��� t� � ��

u�L� t� � t�

b�
ux��� t� � t�

ux�L� t� � t��

c�
u��� t� � ��

ux�L� t� � t�

d�
ux��� t� � ��

ux�L� t� � ��


� Solve the wave equation

utt � uxx � �� � � x � L�

subject to the initial conditions
u�x� �� � f�x�

ut�x� �� � g�x�

and the boundary conditions
u��� t� � ��

ux�L� t� � B�t��

���



��� Poisson�s Equation

In this section we solve Poisson�s equation subject to homogeneous and nonhomogeneous
boundary conditions� In the �rst case we can use the method of eigenfunction expansion in
one dimension and two�

	���� Homogeneous Boundary Conditions

Consider Poisson�s equation
r�u � S� ���������

subject to homogeneous boundary condition� e�g�

u � �� on the boundary� ���������

The problem can be solved by the method of eigenfunction expansion� To be speci�c we
suppose the domain is a rectangle of length L and height H� see �gure 

�

We �rst consider the one dimensional eigenfunction expansion� i�e�

�n�x� � sin
n�

L
x� �������	�

and

u�x� y� �
�X
n��

un�y� sin
n�

L
x� ���������

Substitution in Poisson�s equation� we get

�X
n��

�
u
��
n�y��



n�

L

��
un�y�

�
sin

n�

L
x �

�X
n��

sn�y� sin
n�

L
x� �������
�

where

sn�y� �
�

L

Z L

�
S�x� y� sin

n�

L
xdx� ���������

The other boundary conditions lead to

un��� � �� ���������

un�H� � �� ���������

So we end up with a boundary value problem for un�y�� i�e�

u��n�y��


n�

L

��
un�y� � sn�y�� ���������

subject to ��������������������
It requires a lengthy algebraic manipulation to show that the solution is

un�y� �
sinh n	�H�y	

L

�n	
L
sinh n	H

L

Z y

�
sn��� sinh

n�

L
�d� �

sinh n	y
L

�n	
L
sinh n	H

L

Z H

y
sn��� sinh

n�

L
�H � ��d��

����������

���



x

y

Figure 

� Rectangular domain

So the solution is given by ��������� with un�y� and sn�y� given by ���������� and ���������
respectively�

Another approach� related to the �rst� is the use of two dimensional eigenfunctions� In
the example�

�nm � sin
n�

L
x sin

m�

H
y� ����������

�nm �


n�

L

��
�


m�

H

��
� ����������

We then write the solution

u�x� y� �
�X
n��

�X
m��

unm�nm�x� y�� ��������	�

Substituting ��������	� into the equation� we get

�X
n��

�X
m��

��unm��nm sin
n�

L
x sin

m�

H
y � S�x� y�� ����������

Therefore �unm�nm are the coe�cients of the double Fourier series expansion of S�x� y��
that is

unm �

R L
�

RH
� S�x� y� sin n	

L
x sin m	

H
ydydx

��nm
R L
�

RH
� sin� n	

L
x sin� m	

H
ydydx

� ��������
�

This double series may converge slower than the previous solution�

���



	���� Inhomogeneous Boundary Conditions

The problem is then
r�u � S� ���������

subject to inhomogeneous boundary condition� e�g�

u � �� on the boundary� ���������

The eigenvalues �i and the eigenfunctions �i satisfy

r��i � ��i�i� �������	�

�i � �� on the boundary� ���������

Since the boundary condition ��������� is not homogeneous� we cannot dierentiate the in�
�nite series term by term� But note that the coe�cients un of the expansion are given
by�

un �

R R
u�x� y��n�x� y�dxdyR R

��
n�x� y�dxdy

� � �

�n

R R
ur��ndxdyR R
��
ndxdy

� �������
�

Using Green�s formula� i�e�Z Z
ur��ndxdy �

Z Z
�nr�udxdy �

I
�ur�n � �nru� � nds�

substituting from ���������� ��������� and ���������

�
Z Z

�nSdxdy �
I
�r�n � nds ���������

Therefore the coe�cients un become �combining �������
������������

un � � �

�n

R R
S�ndxdy �

H
�r�n � ndsR R

��
ndxdy

� ���������

If � � � we get ��������
�� The case � � � will not be discussed here�

We now give another way to solve the same problem �������������������� Since the problem
is linear� we can write

u � v � w ���������

where v solves Poisson�s equation with homogeneous boundary conditions �see the previous
subsection� ans w solves Laplace�s equation with the nonhomogeneous bounday conditions
����������

���



Problems

�� Solve
r�u � S�x� y�� � � x � L� � � y � H�

a�
u��� y� � u�L� y� � �

u�x� �� � u�x�H� � �

Use a Fourier sine series in y�

b�
u��� y� � � u�L� y� � �

u�x� �� � u�x�H� � �

Hint� Do NOT reduce to homogeneous boundary conditions�

c�
ux��� y� � ux�L� y� � �

uy�x� �� � uy�x�H� � �

In what situations are there solutions�

�� Solve the following Poisson�s equation

r�u � e�y sin x� � � x � �� � � y � L�

u��� y� � u��� y� � ��

u�x� �� � ��

u�x� L� � f�x��

��	



SUMMARY
Nonhomogeneous problems

�� Find a function w that satis�es the inhomogeneous boundary conditions �except for
Poisson�s equation��

�� Let v � u� w� then v satis�es an inhomogeneous PDE with homogeneous boundary
conditions�

	� Solve the homogeneous equation with homogeneous boundary conditions to obtain
eigenvalues and eigenfunctions�

�� Expand the solution v� the right hand side �source�sink� and initial condition�s� in
eigenfunctions series�


� Solve the resulting inhomogeneous ODE�

"un�t� � k�nun�t� � sn�t�� n � �� �� � � �

un��� � given

un�t� � un���e
�nkt �

Z t

�
sn���e

�nk�t��	d��

'un�t� � c��nun�t� � sn�t�� n � �� �� � � �

un��� � given

"un��� � given

un�t� � un��� cos c
q
�nt �

"un���

c
p
�n

sin c
q
�nt �

Z t

�
sn���

sin c
p
�n�t� ��

c
p
�n

d��

u��n�y��


n�

L

��
un�y� � sn�y��

un��� � ��

un�H� � ��

un�y� �
sinh n	�H�y	

L

�n	
L
sinh n	H

L

Z y

�
sn��� sinh

n�

L
�d� �

sinh n	y
L

�n	
L
sinh n	H

L

Z H

y
sn��� sinh

n�

L
�H � ��d��

���



� Fourier Transform Solutions of PDEs

In this chapter we discuss another method to solve PDEs� This method extends the separa�
tion of variables to in�nite domain�

��� Motivation

We start with an example to motivate the Fourier transform method�

Example
Solve the heat equation

ut � kuxx� �� � x ��� �������

subject to the initial condition
u�x� �� � f�x�� �������

Using the method of separation of variables we have

u�x� t� � X�x�T �t�� �����	�

and the two ODEs are
"T �t� � �k�T �t�� �������

X ���x� � ��X�x�� �����
�

Notice that we do not have any boundary conditions� but we clearly require the solution to
be bounded as x approaches ��� Using the boundedness� we can immediately eliminate the
possibility that � � � �exercise�� Any � 
 � will do� This is called a continuous spectrum� In
the case of �nite domain� we always have a discrete spectrum� The principle of superposition
will take the form of an integral �instead of an in�nite series��

u�x� t� �
Z �

�

n
C��� cos

p
�x�D��� sin

p
�x
o
e�ktd��

Let � � ��� then

u�x� t� �
Z �

�
fA��� cos�x�B��� sin�xg e�k��td�� �������

The initial condition leads to

f�x� �
Z �

�
fA��� cos�x�B��� sin�xg d�� �������

We can rewrite these integral as follows

u�x� t� �
Z �

��
K���ei�xe�k�

�td�� �������

f�x� �
Z �

��
K���ei�xd�� �������

by representing the trigonometric functions as complex exponentials and combining the
resulting integrals�

In the next section� we de�ne Fourier transform and show how to obtain the solution to
the heat conduction and wave equations�

��




��� Fourier Transform pair

Let

F ��� �
�

��

Z �

��
f�x�e�i�xdx �������

be the Fourier transform of f�x�� The inverse Fourier transform is de�ned by

f�x� �
Z �

��
F ���ei�xd� � �������

Actually the left hand side should be
f�x
� � f�x��

�
�

In order to solve the heat equation� we need the Inverse Fourier transform of a Gaussian�

G��� � e���
�

� �����	�

g�x� �
Z �

��
e���

�

ei�xd� �
Z �

��
e���

�
i�xd� � �������

We will show that �next � pages�
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�� Plot G��� for � � � and � � 


g�x� �

r
�

�
e�

x�

�� � �����
�

This function is also a Gaussian� The parameter � controls the spread of the bell� If � is

large G��� is sharply peaked� but then
�

�
is small and g�x� is broadly spread� see Figures


��
��

g�x� �
Z �

��
e���

�
ix�d�

�
Z �

��
e
����� � i

x

�
��
d�

���
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complete the squares

� e�
x�

��

Z �

��
e�����i

x
��

	�d��

Let

z �
p
��� � i

x

��
�

dz �
p
�d�

� e�
x�

��
�p
�

Z ��i x
��

���i x
��

e�z
�

dz

From complex variables

� e�
x�

��
�p
�

Z �

��
e�z

�

dz

The trick to compute the integral is as follows� if

I �
Z �

��
e�z

�

dz

then
I� �

Z �

��
e�x

�

dx
Z �

��
e�y

�

dy �
Z �

��

Z �

��
e��x�
y�	dy dx �

Use polar coordinates

x� � y� � r�

dx dy � rdrd�

I� �
Z �	

�


Z �

�
e�r

�

rdr
�
d��

The integral in r is easy �let r� � s� �rdr � ds�� therefore

I� �
�

�
� �� � � �

���



Thus

g�x� � e�
x�

��
�p
�

p
� �������

which is �����
�

���



Problems

�� Show that the Fourier transform is a linear operator� i� e�

F �c�f�x� � c�g�x�� � c�F �f�x�� � c�F �g�x�� �

�� If F ��� is the Fourier tranform of f�x�� show that the inverse Fourier transform of
e�i��F ��� is f�x� �� � This is known as the shift theorem�

	� Determine the Fourier transform of

f�x� �

�
� jxj � a
� jxj � a �

�� Determine the Fourier transform of

f�x� �
Z x

�
��t�dt�


� Prove the scaling theorem

F �f�ax�� �
�

jaj F


�

a

�

where
F ��� � F �f�x�� �

�� If F ��� is the Fourier tranform of f�x�� prove the translation theorem

F
�
eiaxf�x�

	
� F �� � a��

���



��� Heat Equation

We have seen that the solution of the heat equation

ut � kuxx� �� � x ��� ���	���

u�x� �� � f�x�� ���	���

is given by

u�x� t� �
Z �

��
c���ei�x�k�

�td�� ���	�	�

where
f�x� �

Z �

��
c���ei�xd� � ���	���

Therefore c��� is the Fourier transform of f�x�� i� e�

c��� �
�

��

Z �

��
f�x�e�i�xdx � ���	�
�

Thus� the solution is given by ���	�	� and ���	�
�� Let�s simplify this by substituting ���	�
�
into ���	�	�

u�x� t� �
Z �

��

�
�

��

Z �

��
f���e�i��d�

�
ei�x�k�

�td� �

Interchange the integration� we have

u�x� t� �
�

��

Z �

��
f���

�Z �

��
e�k�

�t
i��x��	d�
�
d� �

Let
g�x� t� �

Z �

��
e�kw

�tei�xd� � ���	���

then

u�x� t� �
�

��

Z �

��
f���g�x� �� t�d� �

The integral in ���	��� is found previously �a Gaussian� for � � kt�

g�x� t� �

r
�

kt
e
� x�

�kt � ���	���

thus the solution is

u�x� t� �
�p
��kt

Z �

��
f���e�

�x����
�kt d� � ���	���

The function

G�x� t% �� �� �
�p
��kt

e�
�x����
�kt ���	���

is called the in�uence function� It measures the eect of the initial temperature f at point �
on the temperature u at later time t and location x� The spread of in�uence is small when
t is small �t is in denominator���� The spread of in�uence increases with time�

���



Example
Solve the heat equation

ut � kuxx� �� � x �� � ���	����

subject to the initial condition

u�x� �� � f�x� �

�
� x � �
��� x � �

� ���	����

The solution is

u�x� t� �
���p
��kt

Z �

�
e
��x� ���

�kt d� � ���	����

Note that the lower limit of the integral is zero since f is zero for negative argument� This
integral can be written in terms of the error function de�ned by

erf�z� �
�p
�

Z z

�
e��

�

d� � ���	��	�

The function vanishes at x � � and monotonically increases to unity� The graph of the
function is given in Figure 
�� Using the transformation

z �
� � xp
�kt

� ���	����

the integral ���	���� becomes

u�x� t� �
���p
�

Z �

� xp
�kt

e�z
�

dz �
���p
�

Z �

�
e�z

�

dz �
���p
�

Z �

� xp
�kt

e�z
�

dz � ���	��
�

Since Z �

�
e�z

�

dz �

p
�

�
� ���	����

we get when substituting � � �z in the second integral

u�x� t� � 
� �
���p
�

Z xp
�kt

�
e��

�

d� ���	����

after changing the variables on the last integral in ���	��
�� The solution of ���	����*���	����
is then given by

u�x� t� � 
�

�
� � erf

�
xp
�kt

��
� ���	����

In order to be able to solve other PDEs� we list in the next chapter several results
concerning Fourier tranform and its inverse�

���
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Problems

�� Use Fourier transform to solve the heat equation

ut � uxx � u� �� � x ��� t � ��
u�x� �� � f�x� �

��	



��� Fourier Transform of Derivatives

In this chapter� we show how a PDE is transformed to an ODE by the Fourier transform�
We can show that a Fourier transform of time derivatives are given as time derivatives of
the Fourier transform� Fourier transform of spatial derivatives are multiples of the Fourier
transform of the function� We use F to denote the Fourier transform operator�

F
�
�u

�t

�
�

�

�t
F�u� �������

F
�
�u

�x

�
� i�F�u� �������

F
�
��u

�x�

�
� ���F�u� �����	�

These can be obtained by de�nition of Fourier transform and left as an exercise� As a result

ut�x� t� � kuxx�x� t� �������

becomes
�

�t
U��� t� � �k��U��� t� �����
�

where U��� t� is the Fourier transform of u�x� t� � Equation �����
� is a �rst order ODE� for
which we know that the solution is

U�w� t� � C���e�k�
�t �������

The  constant! c��� can be found by transforming the initial condition

u�x� �� � f�x� �������

i� e�
U��� �� � F ��� � �������

Therefore� combining ������� and ������� we get

c��� � F ��� � �������

Another important result in solving PDEs using the Fourier tranform is called the convolution
theorem�

Convolution Theorem Let f�x�� g�x� be functions whose Fourier transform is F ���� G���
respectively� Let h�x� having Fourier transform H��� � F ���G���� then

h�x� �
Z �

��
H���ei�xd� �

Z �

��
F ���G���ei�xd�

�
Z �

��
F ���

�
�

��

Z �

��
g���e�i��d�

�
ei�xd�

���



�
�

��

Z �

��
g���

�Z �

��
F ���ei��x��	d�

�
� �z �

�f�x��	

d�

�
�

��

Z �

��
g���f�x� ��d� �

We denote the answer by f � g� meaning the convolution of f�x� and g�x� �
To use this for the heat equation� combining ������� and ������� we get

U��� t� � F ���e�k�
�t � ��������

Therefore� by the convolution theorem and the inverse transform of a Gaussian� we get

u�x� t� �
�

��

Z �

��
f���

r
�

kt
e�

�x����
�kt d� � ��������

exactly as before�

Example
Solve the one dimensional wave equation

utt � c�uxx � �� �� � x �� � ��������

subject to the initial conditions�
u�x� �� � f�x� � ������	�

ut�x� �� � � � ��������

The Fourier transform of the equation and the initial conditions yield

Utt��� t� � c���U��� t� � � � ������
�

U��� �� � F ��� � ��������

Ut��� �� � � � ��������

The solution is �treating ������
� as ODE in t with � �xed�

U��� t� � A��� cos c�t�B��� sin c�t � ��������

The initial conditions combined with �������� give

U��� t� � F ��� cos c�t � ��������

If we write cos c�t in terms of complex exponentials� and �nd the inverse transform� we have

u�x� t� �
�

�

Z �

��
F ���

h
ei��x�ct	 � ei��x
ct	

i
d�

�
�

�
�f�x� ct� � f�x� ct�� �

��������

��




Example
Solve Laplace�s equation in a half plane

uxx � uyy � � � �� � x ��� � � y �� � ��������

subject to the boundary condition

u�x� �� � f�x� � ��������

Fourier transform in x of the equation and the boundary condition yields

Uyy��� y�� ��U��� y� � � � ������	�

U��� �� � F ��� � ��������

The solution is
U��� y� � A���e�y �B���e��y � ������
�

To ensure boundedness of the solution� we must have

A��� � � for � � � �

B��� � � for � � � �

Therefore the solution should be

U��� y� � C���e�j�jy � ��������

where� by the boundary condition�

C��� � F ��� �

We will show next that

g�x� y� �
Z �

��
e�j�jyei�xd� �

�y

x� � y�
� ��������

g�x� y� �
Z �

��
e�yei�xd� �

Z �

�
e��yei�xd�

�
�

y � ix
e��y
ix	j��� �

�

�y � ix
e���y�ix	j��

�
�

y � ix
�

�

y � ix
�

y � ix � y � ix

y� � x�
�

�y

x� � y�

Thus we have

u�x� y� �
�

��

Z �

��
f���

�y

�x� ��� � y�
d� � ��������

���



Problems

�� Solve the diusion�convection equation

ut � kuxx � cux� �� � x �� �
u�x� �� � f�x� �

�� Solve the linearized Korteweg�de Vries equation

ut � kuxxx � �� � x �� �
u�x� �� � f�x� �

	� Solve Laplace�s equation

uxx � uyy � � � � � x � L � �� � y �� �

subject to

u��� y� � g��y� �

u�L� y� � g��y� �

�� Solve the wave equation

utt � uxx � �� � x �� �

u�x� �� � � �

ut�x� �� � g�x� �

���



��� Fourier Sine and Cosine Transforms

If f�x� is an odd function� then the Fourier sine transform is de�ned by�

S�f�x�� � F s��� �
�

�

Z �

�
f�x� sin�x dx ���
���

and the inverse transform is

f�x� �
Z �

�
F s��� sin�x d� � ���
���

If f�x� is an even function� then the Fourier cosine transform is given by�

C�f�x�� � F c��� �
�

�

Z �

�
f�x� cos�x dx ���
�	�

f�x� �
Z �

�
F c��� cos�x d� ���
���

The superscripts c and s will be suppressed unless it is not clear� We can show

C

�
�f

�x

�
� � �

�
f��� � �S�f � ���
�
�

S

�
�f

�x

�
� ��C�f � ���
���

C

�
��f

�x�

�
� � �

�

df���

dx
� ��C�f � ���
���

S

�
��f

�x�

�
�

�

�
�f���� ��S�f � ���
���

Thus to use the cosine tranform to solve second order PDEs we must have
df

dx
���� For sine

transform we require f����

Example
Solve Laplace�s equation in a semi�in�nite strip

uxx � uyy � � � � � x � L � � � y �� ���
���

u��� y� � g��y�� ���
����

u�L� y� � g��y�� ���
����

u�x� �� � f�x�� ���
����

Since u�x� �� is given� we must use Fourier sine transform� The transformed equation is

Uxx � ��U �
�

�
�u�x� �� � � ���
��	�

���
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Figure 
�� Domain for Laplace�s equation example

or

Uxx � ��U � � �

�
�f�x� ���
����

subject to the boundary conditions

U��� �� � G����� ���
��
�

U�L� �� � G����� ���
����

Another way is to solve the following two problems and avoid the inhomogeneity in
���
����

��

u�xx � u�yy � � �

u���� y� � g��y� �

u��L� y� � g��y� �

u��x� �� � � �

��

u�xx � u�yy � � �

u���� y� � u��L� y� � � �

u��x� �� � f�x� �

The solution of our problem will be the sum of the solutions of these two �principle of
superposition���

���



For the solution of problem �� we take Fourier sine transform in y to get

U�
xx�x� ��� ��U��x� �� � � � ���
����

The solution is
U��x� �� � A��� sinh�x�B��� sinh��L� x� � ���
����

The boundary conditions lead to

B��� sinh�L �
�

�

Z �

�
g��y� sin�y dy �

A��� sinh�L �
�

�

Z �

�
g��y� sin�y dy �

A���� B��� are given in terms of the Fourier sine transform of g��y�� g��y� respectively� The
inverse transform is beyond the scope of this course and will require knowledge of complex
variables� The solution of problem � does NOT require Fourier transform �why���

u��x� y� �
�X
n��

an sin
n�

L
xe�

n�
L
y ���
����

We now extend the convolution theorem �see section ���� to the Fourier sine and cosine
transforms�

Convolution theorem for Fourier sine transform Let F ��� be the Fourier sine transform
of f and G��� be the Fourier cosine transform of g� i�e�

F ��� � S�f �� G��� � C�g�

then the inverse Fourier sine transform of H��� � F ���G��� is given by

h�x� �
�

�

Z �

�
f��� �g�x� �� � g�x� ��� d�� ���
����

or

h�x� �
�

�

Z �

�
g��� �f�� � x� � f�� � x�� d�� ���
����

The proof is similar to the convolution therem in the previous section� We need to use
the trigonometric identity

sin x sin y �
�

�
cos�x� y� � �

�
cos�x� y��

Convolution theorem for Fourier cosine transform Let F ��� and G��� be the Fourier
cosine transforms of f and g� respectively� then the inverse Fourier cosine transform of
H��� � F ���G��� is given by

h�x� �
�

�

Z �

�
g��� �f�x� �� � f�x� ��� d�� ���
����

The proof is similar to the convolution therem for the sine transform� We need to use
the trigonometric identity

cos x cos y �
�

�
cos�x � y� �

�

�
cos�x� y��

���



Problems

��
a� Derive the Fourier cosine transform of e��x

�
�

b� Derive the Fourier sine transform of e��x
�
�

�� Determine the inverse cosine transform of �e��� �Hint� use dierentiation with respect
to a parameter�

	� Solve by Fourier sine transform�

ut � kuxx � x � � � t � �

u��� t� � � �

u�x� �� � f�x� �

�� Solve the heat equation

ut � kuxx � x � � � t � �

ux��� t� � � �

u�x� �� � f�x� �


� Prove the convolution theorem for the Fourier sine transforms� i�e� ���
���� and ���
�����

�� Prove the convolution theorem for the Fourier cosine transforms� i�e� ���
�����

��
a� Derive the Fourier sine transform of f�x� � ��

b� Derive the Fourier cosine transform of f�x� �
Z x

�
��t�dt�

c� Derive the Fourier sine transform of f�x� �
Z x

�
��t�dt�

�� Determine the inverse sine transform of
�

�
e��� �Hint� use integration with respect to a

parameter�

���



��� Fourier Transform in � Dimensions

We de�ne Fourier transform in � dimensions by generalizing the �D case�

F ���� ��� �
�

�����

Z �

��

Z �

��
f�x� y�e�i��xe�i��ydx dy � �������

f�x� y� �
Z �

��

Z �

��
F ���� ���e

i��xei��yd�� d�� � �������

If we let
� � ���� ��� � �����	�

r � �x� y� � �������

then

F ��� �
�

�����

Z �

��

Z �

��
f�r�e�i����rdr � �����
�

f�r� �
Z �

��

Z �

��
F ���ei����rd� � �������

It is easy to show by de�nition that

F�ut� �
�

�t
F�u� �

F�ux� � i��F�u� �

F�uy� � i��F�u� �

F�ru� � i�F�u� �

F�r�u� � ���F�u� �

Example
Solve the heat equation

ut � kr�u � �� � x �� � �� � y �� �

u�x� y� �� � f�x� y� �

Using double Fourier transform we have

�

�t
U � �k��U

U��� �� � F ��� �

The solution is
U��� t� � F ���e�k��

�t �������

or when taking the inverse transform

u�x� y� t� �
Z �

��

Z �

��
F ���e�k��

�tei����rd� � �������

���



Using a generalization of the convolution theorem� i� e� if H��� � F ���G��� then

h�x� y� t� �
�

�����

Z �

��

Z �

��
f�r��g�r � r��dr� � �������

we have

u�x� y� t� �
Z �

��

Z �

��
f�r��

�

��kt
e
��r � r��

�

�kt dr� � ��������

We see that the in�uence function is the product of the in�uence functions for two one
dimensional heat equations�

��	



Problems

�� Solve the wave equation

utt � c�r�u� �� � x �� � �� � y ���

u�x� y� �� � f�x� y��

ut�x� y� �� � ��

���



SUMMARY

De�nition of Fourier Transform and its Inverse�

F ��� �
�

��

Z �

��
f�x�e�i�xdx

f�x� �
Z �

��
F ���ei�xd� �

Table of Fourier Transforms

f�x� F ���

e��x
� �p

���
e�

��

�� Gaussian

�f

�t

�F

�t
derivatives

�f

�x
i�F ���

��f

�x�
���F ���

�

��

Z �

��
f���g�x� ��d� F ���G��� convolution

��x� x��
�

��
e�i�x� Dirac

f�x� �� e�i��F ��� shift

xf�x� i
dF

d�
multiplication by x

��

x� � ��
e�j�j�Z x

�
��t�dt �

�

i�
F���x��

f�x� �

�
� jxj � a
� jxj � a

�

�

sin a�

�

��




De�nition of Fourier Sine Transform and its Inverse�

S�f�x�� � F s��� �
�

�

Z �

�
f�x� sin�x dx

f�x� �
Z �

�
F s��� sin�x d� �

Table of Fourier Sine Transforms

f�x� S�f �

df

dx
��C�f �

d�f

dx�
�

�
�f���� ��S�f �

x

x� � ��
e���

e��x
�

�

�

�� � ��Z x

�
��t�dt

�

�
C���x��

�
�

�

�

�
�
	

R�
� f����g�x� ��� g�x� ���d� S�f �C�g�

De�nition of Fourier Cosine Transform and its Inverse�

C�f�x�� � F c��� �
�

�

Z �

�
f�x� cos�x dx

f�x� �
Z �

�
F c��� cos�x d�

Table of Fourier Cosine Transforms

f�x� C�f �

df

dx
� �

�
f��� � �S�f �

d�f

dx�
� �

�

df

dx
���� ��C�f �

�

x� � ��
e���

e��x
�

�

�

�� � ��

e��x
� �p

���
e�

��

��

Z x

�
��t�dt � �

�
S���x��

�
	

R�
� g����f�x� �� � f�x � ���d� C�f �C�g�

���



De�nition of Double Fourier Transform and its Inverse�

F ���� ��� �
�

�����

Z �

��

Z �

��
f�x� y�e�i��xe�i��ydx dy

f�x� y� �
Z �

��

Z �

��
F ���� ���e

i��xei��yd�� d�� �

Table of Double Fourier Transforms

f�x� y� F ���

fx i��F ���

fy i��F ���

r�f ���F ���

�

�
e�r

���� e����
�

f�r � �� e�i���
��F ���

�

�����

Z Z
f�r��g�r � r��dr� F ���G���

���



�� Greens Functions

���� Introduction

In the previous chapters� we discussed a variety of techniques for the solution of PDEs�
namely� the method of characteristics �for hyperbolic problems only� linear as well as non�
linear�� the method of separation of variables �for linear problem on certain domains� and
Fourier transform �for in�nite and semi�in�nite domains�� The method of separation of
variables� when it works� it yields an in�nite series which often converges slowly� Thus it
is di�cult to obtain an insight into the over�all behavior of the solution� its behavior near
edges and so on� That�s why� the method of characteristics is preferable over the method of
separation of variables for hyperbolic problems� The Green�s function approach would allow
us to have an integral representation of the solution �as in the method of characteristics�
instead of an in�nite series�

Physically� the method is obvious� To obtain the �eld� u� caused by a distributed source�
we calculate the eect of each elementary portion of source and add �integrate� them all� If
G�r% r�� is the �eld at the observer�s point r caused by a unit source at the source point r��
then the �eld at r caused by a source distribution ��r�� is the integral of ��r��G�r% r�� over
the whole range of r� occupied by the source� The function G is called Green�s function� We
can satisfy boundary conditions in the same way� What may be surprising is that essentially
the same function gives the answer in both cases� Physically� this means that the boundary
conditions can be thought of as being equivalent to sources� We have seen this in Chapter
� when discussing the method of eigenfunction expansion to solve inhomogeneous problems�
The inhomogeneous boundary conditions were replaced by homogeneous ones and the source
has been changed appropriately�

���� One Dimensional Heat Equation

In this section� we demonstrate the idea of Green�s function by analyzing the solution of the
one dimensional heat equation�

ut � uxx� � � x � �� t � �� ��������

subject to
u�x� �� � f�x�� � � x � �� ��������

u��� t� � u��� t� � �� ������	�

The method of separation of variables yields the solution

u�x� t� �
�X
n��

an sinn�x � e��n		�t� ��������

where an are the Fourier coe�cients of the expansion of f�x� in Fourier sine series�

an � �
Z �

�
f�x� sinn�xdx� ������
�

���



We substitute ������
� into �������� to obtain after reversing the order of integration and
summation

u�x� t� �
Z �

�
f�s�

� �X
n��

� sinn�s � sinn�x � e��n		�t

�
ds� ��������

The quantity in parenthesis is called in�uence function for the initial condition� It expresses
the fact that the temperature at point x at time t is due to the initial temperature f at
s� To obtain the temperature u�x� t�� we sum �integrate� the in�uence of all possible initial
points� s�

What about the solution of the inhomogeneous problem�

ut � uxx �Q�x� t�� � � x � �� t � �� ��������

subject to the same initial and boundary conditions� As we have seen in Chapter �� we
expand u and Q in the eigenfunctions sinn�x�

Q�x� t� �
�X
n��

qn�t� sinn�x� ��������

with

qn�t� � �
Z �

�
Q�x� t� sinn�xdx� ��������

and

u�x� t� �
�X
n��

un�t� sinn�x� ���������

Thus we get the inhomogeneous ODE

"un�t� � �n���un�t� � qn�t�� ���������

whose solution is

un�t� � un���e
��n		�t �

Z t

�
qn���e

��n		��t��	d�� ���������

where

un��� � an � �
Z �

�
f�x� sinn�xdx� �������	�

Again� we substitute �������	�� �������� and ��������� in ��������� we have

u�x� t� �
Z �

�
f�s�

� �X
n��

� sinn�s � sinn�x � e��n		�t

�
ds

�
Z �

�

Z t

�
Q�s� ��

� �X
n��

� sinn�s � sinn�x � e��n		��t��	
�
d�ds�

���������

We therefore introduce Green�s function

G�x% s� t� �� � �
�X
n��

sinn�s � sinn�x � e��n		��t��	� �������
�

���



and the solution is then

u�x� t� �
Z �

�
f�s�G�x% s� t�ds�

Z �

�

Z t

�
Q�s� ��G�x% s� t� ��d�ds� ���������

As we said in the introduction� the same Green�s function appears in both� Note that the
Green�s function depends only on the elapsed time t� � �

���



Problems

�� Consider the heat equation in one dimension

�u

�t
�
��u

�x�
�Q�x� t�� � � x � �� t � ��

u�x� �� � f�x��

u��� t� � A�t��

u��� t� � B�t��

Obtain a solution in the form ����������

�� Consider the same problem subject to the homogeneous boundary conditions

ux��� t� � ux��� t� � �

a� Obtain a solution by any method�

b� Obtain a solution in the form ����������

	� Solve the wave equation in one dimension

��u

�t�
�
��u

�x�
�Q�x� t�� � � x � �� t � ��

u�x� �� � f�x��

ut�x� �� � g�x��

u��� t� � ��

u��� t� � ��

De�ne functions such that a solution in a similar form to ��������� exists�

�� Solve the above wave equation subject to

a�
ux��� t� � ux��� t� � ��

b�
ux��� t� � �� ux��� t� � B�t��

c�
u��� t� � A�t�� ux��� t� � ��

���



���� Green�s Function for Sturm�Liouville Problems

Consider the Sturm�Liouville boundary value problem

��p�x�y��x��� � q�x�y�x� � f�x�� � � x � � ����	���

y���� h�y
���� � �� ����	���

y���� h�y
���� � �� ����	�	�

where p�x� �� �� p��x�� q�x� and f�x� are continuous on ��� �� and h�� h� are real constants�
We would like to obtain Green�s function G�x% s� so that the solution is

y�x� �
Z �

�
G�x% s�f�s�ds� ����	���

The function G�x% s� is called Green�s function for ����	��������	�	� if it is continuous on
� � x� s � � and ����	��� uniquely solves ����	��������	�	� for every continuous function
f�x��

To see why ����	��� is reasonable� we consider the steady state temperature in a rod� In
this case f�x� represents a heat source intensity along the rod� Consider� a heat distribution
fs�x� of unit intensity localized at point x � s in the rod� That is� assume that

fs�x� � �� for jx� sj � �� � � �� � is small

and Z s
�

s��
fs�x�dx � �� ����	�
�

Let y�x� � G��x% s� be the steady state temperature induced by the source fs�x�� As
�� �� it is hoped that the temperature distribution G��x% s� will converge to a limit G�x% s�
corresponding to a heat source of unit intensity applied at x � s� Now� imagine that the rod
is made of a large number �N� of tiny pieces� each of length ��� and let sk be a point in the
kth piece� The heat source f�x� delivers an amount of heat ��f�sk� to the kth piece� Since
the problem is linear and homogeneous� the temperature at x caused by the heating near sk
is nearly G��x% sk�f�sk���� thus

y�x� �
NX
k��

��G��x% sk�f�sk�� ����	���

is the total contribution from all pieces� As we let �� � and the number of pieces approach
in�nity

y�x� � lim
���

NX
k��

��G��x% sk�f�sk� �
Z �

�
G�x% s�f�s�ds� ����	���

This discussion suggests the following properties of Green�s function G�x% s��
�� The solution G��x% s� with f � fs�x� satis�es

LG� � fs�x� � �� for jx� sj � � ����	���

���



where the operator L as de�ned in Chapter ��

Ly � ��py��� � qy� ����	���

We can write this also as

� d

dx

�
p�x�

d

dx
G�x% s�

�
� q�x�G�x% s� � �� for x �� s� ����	����

This is related to Dirac delta function to be discussed in the next section�
�� G�x% s� satis�es the boundary conditions ����	��������	�	� since each G��x% s� does�
	� The function G��x% s� has a continuous second derivative� since it is a solution to ����	����
The question is how smooth the limit G�x% s� is� It can be shown that the �rst derivative
has a jump discontinuity� i�e�

�G�s
% s�

�x
� �G�s�% s�

�x
� � �

p�s�
� ����	����

where
s� � lim

���
�s� ��� ����	����

We now turn to the proof of ����	��� under simpler boundary conditions �h� � h� � ���
i�e�

y��� � y��� � �� ����	��	�

The proof is constructive and called Lagrange�s method� It is based on Lagrange�s identity
���	�	��

Suppose we can �nd a function w �� � so that

Lw � �� ����	����

Apply Lagrange�s identity with u � y and v � w� to get

yLw� wLy � � d

dx
�p�wy� � w�y�� �

On the other hand�
wLy � yLw � wf�

since Lw � � and Ly � f � Therefore we can integrate the resulting equation

� d

dx
�p�wy� � yw��� � wf� ����	��
�

and have a �rst order ODE for y� Thus w is called an integrating factor for Ly � f �
Suppose we can �nd integrating factors u and v such that

Lu � �� u��� � �� ����	����

��	



and
Lv � �� v��� � �� ����	����

i�e� each one satis�es only one of the boundary conditions� Choose w to be either u or v
from ����	���������	����� thus by integration of ����	��
� we haveZ x

�
u�s�f�s�ds � �p�x��uy� � u�y�� ����	����

Z �

x
v�s�f�s�ds � �p�x��vy� � v�y�� ����	����

Note that the limits of integration are chosen dierently in each case� Now we can eliminate
y� and get

v�x�
Z x

�
u�s�f�s�ds� u�x�

Z �

x
v�s�f�s�ds � �p�x�W �x�y�x�� ����	����

where the Wronskian W �x� is

W �x� �
u�x� v�x�
u��x� v��x�

� ����	����

It is easy to see that �exercise�
p�x�W �x� � c� ����	����

Therefore

y�x� � ��

c

Z x

�
u�s�v�x�f�s�ds� �

c

Z �

x
u�x�v�s�f�s�ds

or

y�x� �
Z �

�
G�x% s�f�s�ds ����	��	�

where �if we choose c � ���

G�x% s� �

�
u�s�v�x� � � s � x � �
u�x�v�s� � � x � s � ��

����	����

This completes the proof of ����	��� and we have a way to construct Green�s function by
solving ����	���������	�����

Example Obtain Green�s function for the steady state temperature in a homogeneous rod of

length L and with insulated lateral surface� Assume that the left end of the bar is at zero
temperature� the right end is insulated� and the source of heat is f�x�� The problem can be
formulated mathematically as

�kuxx � f�x�� � � x � L� ����	��
�

u��� � �� ����	����

u��L� � �� ����	����

���



To �nd Green�s function� we solve

�ku�� � �� u��� � �� ����	����

�kv�� � �� v��L� � �� ����	����

and choose c � ��� i�e�
kW � ��� ����	�	��

The solution of each ODE satisfying its end condition is

u � ax� ����	�	��

v � b� ����	�	��

The constants a� b must be chosen so as to satisfy the Wronskian condition ����	�	��� i�e�

a �
�

k

b � �

and therefore ����	���� becomes

G�x% s� �

��
�

s

k
� � s � x � L

x

k
� � x � s � L�

����	�		�

Notice that Green�s function is symmetric as in previous cases% physically this means that
the temperature at x due to a unit source at s equals the temperature at s due to a unit
source at x� This is called Maxwell�s reciprocity�

Now consider the Sturm�Liouville problem

Ly � �ry � f�x�� � � x � �� ����	�	��

subject to ����	��������	�	��
If � � �� this problem reduces to ����	���� while if f � � we have the eigenvalue problem

of Sturm�Liouville type �Chapter ��� Assume that ����	��� has a Green�s function G�x% s��
then any solution of ����	�	�� satis�es �moving �ry to the right�

y�x� �
Z �

�
G�x% s� �f�s� � �r�s�y�s��ds

or

y�x� � �
Z �

�
G�x% s�r�s�y�s�ds� F �x�� ����	�	
�

where

F �x� �
Z �

�
G�x% s�f�s�ds� ����	�	��

��




Equation ����	�	
� is called a Fredholm integral equation of the second kind� The function
G�x% s�r�s� is called its kernel� If f�x� � � then ����	�	
� becomes

y�x� � �
Z �

�
G�x% s�r�s�y�s�ds� ����	�	��

For later reference� equations ����	�	
�� ����	�	�� can be easily symmetrized if r�x� � �� The
symmetric equation is

z�x� � �
Z �

�
k�x% s�z�s�ds � )F �x�� ����	�	��

where
z�x� �

q
r�x�y�x��

k�x% s� � G�x% s�
q
r�x�

q
r�s��

and
)F �x� �

q
r�x�F �x��

���



Problems

�� Show that Green�s function is unique if it exists�
Hint� Show that if there are � Green�s functions G�x% s� and H�x% s� then

Z �

�
�G�x% s��H�x% s�� f�s�ds � ��

�� Find Green�s function for each

a�
�kuxx � f�x�� � � x � L�

u���� � ��

u�L� � ��

b�
�uxx � F �x�� � � x � L�

u���� � ��

u��L� � ��

c�
�uxx � f�x�� � � x � L�

u���� u���� � ��

u�L� � ��

	� Find Green�s function for

�ky�� � �y � �� � � x � ��

y���� y���� � ��

y��� � ��

�� Find Green�s function for the initial value problem

Ly � f�x��

y��� � y���� � ��

Show that the solution is
y�x� �

Z x

�
G�x% s�f�s�ds�


� Prove ����	�����

���



���� Dirac Delta Function

De�ne a pulse of unit length starting at xi as

u�xi� �

�
� �xi� xi ��x�
� otherwise

then any function f�x� on the interval �a� b� can be represented approximately by

f�x� 	�
NX
i��

f�xi�u�xi�� ��������

see �gure ���

a xi xi+∆ b

Figure ��� Representation of a continuous function by unit pulses

This is a piecewise constant approximation of f�x�� As �x� � the number of points N
approaches � and thus at the limit� the in�nite series becomes the integral�

f�x� �
Z b

a
f�xi���x� xi�dx� ��������

where ��x� xi� is the limit of a unit pulse concentrated at xi divided by �x� see �gure ���

1

2

4

1/4
1/2

Figure ��� Several impulses of unit area

The Dirac delta function� ��x � xi�� can also be de�ned as a limit of any sequence of
concentrated pulses� It satis�es the following�Z �

��
��x� xi�dx � �� ������	�

��x� xi� � ��xi � x�� ��������

���



f�x� �
Z �

��
f�xi���x� xi�dx� for any f� ������
�

��x� xi� �
d

dx
H�x� xi�� ��������

where the Heaviside function

H�x� xi� �

�
� x � xi
� x � xi�

��������

H�x� xi� �
Z x

��
��� � xi�d�� ��������

� �c�x� xi�� �
�

jcj��x� xi�� ��������

The Dirac delta function is related to Green�s function via

LG�x% s� � ��x� s�� ���������

�since ��x � s� � � for x �� s� compare ��������� with ����	��� � that is Green�s function is
the response at x due to a concentrated source at s� To prove this� we �nd the solution u of�

Lu � ��x� s�� ���������

Using ����	��� with f�x� � ��x� s�� we have

u�x� �
Z �

�
G�x% ����� � s�d�

which by ������
� becomes�
u�x� � G�x% s�� ���������

Substituting ��������� in ��������� yields ����������

���



Problems

�� Derive ������	� from ���������

�� Show that �������� satis�es ���������

	� Derive ��������
Hint� use a change of variables � � c�x� xi��

�	�



���� Nonhomogeneous Boundary Conditions

The problem to be considered in this section is

Lu � f�x�� � � x � �� ����
���

subject to the nonhomogeneous boundary conditions

u��� � A� ����
���

u��� � B� ����
�	�

The Green�s function G�x% s� satis�es

LG � ��x� s�� ����
���

G��% s� � �� ����
�
�

G��% s� � �� ����
���

since Green�s function always satis�es homogeneous boundary conditions� Now we utilize
Green�s formula

Z �

�
�uLG�GLu� dx � u

dG�x% s�

dx

�����
�

�

�G�x% s�
du

dx

�����
�

�

�

The right hand side will have contribution from the �rst term only� since u doesn�t vanish
on the boundary� Thus

u�s� �
Z �

�
G�x% s� f�x�� �z �

Lu
dx�B

dG�x% s�

dx

�����
x��

� A
dG�x% s�

dx

�����
x��

�

�	�



Problems

�� Consider
ut � uxx �Q�x� t�� � � x � �� t � ��

subject to
u��� t� � ux��� t� � ��

u�x� �� � f�x��

a� Solve by the method of eigenfunction expansion�

b� Determine the Green�s function�

c� If Q�x� t� � Q�x�� independent of t� take the limit as t � � of part �b� in order to
determine the Green�s function for the steady state�

�� Consider
uxx � u � f�x�� � � x � ��

u��� � u��� � ��

Determine the Green�s function�

	� Give the solution of the following problems in terms of the Green�s function

a� uxx � f�x�� subject to u��� � A� ux��� � B�

b� uxx � u � f�x�� subject to u��� � A� u��� � B�

c� uxx � f�x�� subject to u��� � A� ux��� � u��� � ��

�� Solve
dG

dx
� ��x� s��

G��% s� � ��

Show that G�x% s� is not symmetric�


� Solve
uxxxx � f�x��

u��� � u��� � ux��� � uxx��� � ��

by obtaining Green�s function�

�	�



���� Fredholm Alternative And Modi�ed Green�s Functions

Theorem �Fredholm alternative�
For nonhomogeneous problems

Ly � f� ��������

subject to homogeneous boundary conditions ����	��������	�	� either of the following holds
�� y � � is the only homogeneous solution �that is � � � is not an eigenvalue�� in which
case the nonhomogeneous problem has a unique solution�
�� There are nontrivial homogeneous solutions �n�x� �i�e� � � � is an eigenvalue�� in which
case the nonhomogeneous problem has no solution or an in�nite number of solutions�

Remarks�
�� This theorem is well known from Linear Algebra concerning the solution of systems

of linear algebraic equations�
�� In order to have in�nite number of solutions� the forcing term f�x� must be orthogonal

to all solutions of the homogeneous�
	� This result can be generalized to higher dimensions�

Example Consider
uxx � Au � ex� �A �� n� for any integer� ��������

u��� � u��� � �� ������	�

The homogeneous equation

uxx � Au � �� �A �� n� for any integer� ��������

with the same boundary conditions has only the trivial solution� Therefore the nonhomoge�
neous problem has a unique solution� The theorem does not tell how to �nd that solution�
We can use� for example� the method of eigenfunction expansion� Let

u�x� �
�X
n��

un sinnx ������
�

then
un �

�n
A� n�

��������

where �n are the Fourier coe�cients of the expansion of ex in the eigenfunctions sinnx�
If we change the boundary conditions to

ux��� � ux��� � � ��������

and take A � � then the homogeneous equation �uxx � �� has the solution

u � c� ��������

Therefore the nonhomogeneous has no solution �since the forcing term ex is not orthogonal
to u � c��

�		



Now we discuss the solution of

Lu � f� � � x � L� ��������

subject to homogeneous boundary conditions if � � � is an eigenvalue�
If � � � is not an eigenvalue� we have shown earlier that we can �nd Green�s function by

solving
LG � ��x� s�� ���������

Suppose then � � � is an eigenvalue� then there are nontrivial homogeneous solutions vh�
that is

Lvh � �� ���������

and to have a solution for ��������� we must have

Z L

�
f�x�vh�x�dx � �� ���������

Since the right hand side of ��������� is not orthogonal to vh� in fact

Z L

�
vh�x���x� s�dx � vh�s� �� � �������	�

we cannot expect to get a solution for ���������� i�e� we cannot �nd G� To overcome the
problem� we note that

��x� s� � cvh�x� ���������

is orthogonal to vh�x� if we choose c appropriately� that is

c � � vh�s�R L
� v�h�x�dx

� �������
�

Thus� we introduce the modi�ed Green�s function

)G�x% s� � G�x% s� � �vh�x�vh�s� �any �� ���������

which satis�es
L )G � LG� �vh�s�Lvh�x�� �z �

��

or using ��������� and �������
�

L )G � ��x� s�� vh�x�vh�s�R L
� v�h�x�dx

� ���������

Note that the modi�ed Green�s function is also symmetric�
To obtain the solution of �������� using the modi�ed Green�s function� we use Green�s

theorem with v � )G� Z L

�

n
uL )G� )GLu

o
dx � � ���������

�	�



�since u� )G satisfy the same homogeneous boundary conditions�� Substituting ��������� into
��������� and using the properties of Dirac delta function� we have

u�x� �
Z L

�
f�s� )G�x% s�ds�

R L
� u�s�vh�s�dsR L

� v�h�x�dx
vh�x�� ���������

Since the last term is a multiple of the homogeneous solution �both numerator and denomi�
nator are constants�� we have a particular solution for the inhomogeneous

u�x� �
Z L

�
f�s� )G�x% s�ds� ���������

Compare this to ����	�	
� for the case � � ��

Example
uxx � f�x�� � � x � � ���������

ux��� � ux��� � �� ���������

� � � is an eigenvalue with eigenfunction �� ThereforeZ �

�
� � f�x�dx � � �������	�

is necessary for the existence of a solution for ���������� We can take� for example�

f�x� � x� �

�
���������

to satisfy �������	��
Now

d� )G

dx�
� ��x� s� � c � � �������
�

)Gx��% s� � )Gx��% s� � �� ���������

The constant c can be found by requiringZ �

�
���x� s� � c� dx � �

that is
c � ��� ���������

or by using �������
� with L � � and the eigenfunction vh � ��
Therefore

d� )G

dx�
� �� for x �� s ���������

which implies
d )G

dx
�

� �x x � s
�� x x � s

���������

�	




�since the constant of integration should be chosen to satisfy the boundary condition�� In�
tegrating again� we have

)G�x% s� �

��
�
�x

�

�
� s� C�s� x � s

�x
�

�
� x� C�s� x � s

������	��

C�s� is an arbitrary constant�
If we want to enforce symmetry� )G�x% s� � )G�s% x� for x � s then

�s
�

�
� s� C�x� � �x

�

�
� s� C�s�

or

C�s� � �s
�

�
� �� � is an arbitrary constant�

Thus

)G�x% s� �

��
�
�x

� � s�

�
� s� � x � s

�x
� � s�

�
� x� � x � s

������	��

�	�



Problems

�� Use Fredholm alternative to �nd out if

uxx � u � � � x� � � x � ��

subject to
u��� � u��� � ��

has a solution for all � or only for certain values of ��

�� Without determining u�x�� how many solutions are there of

uxx � �u � cos x

a� � � � and u��� � u��� � ��

b� � � � and ux��� � ux��� � ��

c� � � �� and u��� � u��� � ��

d� � � � and u��� � u��� � ��

	� Are there any values of � for which there are solutions of

uxx � u � � � x� �� � x � �

u���� � u����

ux���� � ux����

�� Consider
uxx � u � �

a� Find the general solution�

b� Obtain the solution satisfying

u��� � u��� � ��

Is your answer consistent with Fredholm alternative�

c� Obtain the solution satisfying

ux��� � ux��� � ��

Is your answer consistent with Fredholm alternative�


� Obtain the solution for
uxx � u � ex�

�	�



u��� � �� u���� � ��

�� Determine the modi�ed Green�s function required for

uxx � u � F �x��

u��� � A� u��� � B�

Assume that F satis�es the solvability condition� Obtain the solution in terms of the modi�ed
Green�s function�

�	�



���	 Green�s Function For Poisson�s Equation

In this section� we discuss the solution of Poisson�s equation with either homogeneous or
nonhomogeneous boundary conditions� We also solve the problem� on an in�nite two dimen�
sional domain� For more information on solution of heat conduction using Green�s functions
see Beck et al ������� The book contains an extensive list of Green�s functions�

To solve Poisson�s equation
r�u � f�r� ��������

subject to homogeneous boundary conditions� we generalize the idea of Green�s function to
higher dimensions� The Green�s function must be the solution of

r�G�r% r�� � ��x� x����y � y�� ��������

where
r � �x� y� ������	�

subject to the same homogeneous boundary conditions� The solution is then

u�r� �
Z Z

f�r��G�r% r��dr�� ��������

To obtain Green�s function� we can use one dimensional eigenfunctions �see Chapter ���
Suppose the problem is on a rectangular domain

r�G � ��x� x����y � y��� � � x � L� � � y � H� ������
�

G � �� on all four sides of the rectangle ��������

then the eigenfunction expansion for G becomes �from ����������

G�r% r�� �
�X
n��

gn�y� sin
n�

L
x� ��������

where gn�y� must satisfy �from ����������

d�gn
dy�

�


n�

L

��
gn �

�

L
sin

n�

L
x���y � y��� ��������

gn��� � gn�H� � �� ��������

We rewrite �������� in the form

L

� sin n	
L
x�

d�gn
dy�

� L

� sin n	
L
x�



n�

L

��

gn � ��y � y��� ���������

to match the form of ����������

�	�



The solution is �from �����������

gn�y� �

��
�

cn sinh
n�

L
y sinh

n�

L
�y� �H� y � y�

cn sinh
n�

L
�y �H� sinh

n�

L
y� y � y�

���������

and the constant cn is obtained from the jump condition

dgn
dy

�����
y��

y��
� � �

L
sin

n�

L
x� ���������

which is��

p
� where p is the coe�cient of

d�gn
dy�

in ���������� Combining ��������� and ���������

we get

cn
n�

L

�
sinh

n�

L
y� cosh

n�

L
�y� �H�� cosh

n�

L
y� sinh

n�

L
�y� �H�

�
�

�

L
sin

n�

L
x��

The dierence in brackets is sinh
n�

L
�y� � �y� �H�� � sinh

n�

L
H� Thus

cn �
� sin n	

L
x�

n� sinh n	
L
H
� �������	�

Therefore

G�r% r�� �
�X
n��

� sin n	
L
x�

n� sinh n	
L
H

sin
n�

L
x

��
�

sinh n	
L
y sinh n	

L
�y� �H� y � y�

sinh n	
L
�y �H� sinh n	

L
y� y � y�

���������

Note the symmetry�
Note also that we could have used Fourier sine series in y� this will replace �������� with

G�r% r�� �
�X
n��

hn�x� sin
n�

H
y�

To solve Poisson�s equation with nonhomogeneous boundary conditions

r�u � f�r� �������
�

u � h�r�� on the boundary� ���������

we take the same Green�s function as before

r�G � ��x� x����y � y��� � � x � L� � � y � H� ���������

with homogeneous boundary conditions

G�r% r�� � �� ���������

���



Using Green�s formula

Z Z �
ur�G�Gr�u

	
dxdy �

I ��urG� G��z�
��

ru
�
A � nds

or in our case Z Z
�u�r���r � r��� f�r�G�r% r��� dxdy �

I
h�r�rG � nds�

Thus� when using the properties of the Dirac delta function� we get the solution

u�r�� �
Z Z

f�r�G�r% r��dxdy �
I
h�r�rG�r� � nds� ���������

where r�r� is the gradient with respect to �x�� y�� and it is called dipole source�

How do we solve the problem on an in�nite domain� The formulation is

r�u � f� on in�nite space with no boundary� ���������

Green�s function should satisfy

r�G � ��x� x����y � y��� on in�nite space with no boundary� ���������

The resulting Green�s function in two dimensions is slightly dierent from the one in three
dimensions� We will derive the two dimensional case and leave the other as an exercise�

Because of Symmetry G depends only on the distance r � jr � r�j� Thus ���������
becomes

�

r

d

dr

�
r
dG

dr

�
� ��r�� ���������

The solution is
G�r� � c� ln r � c�� �������	�

To obtain the constants� we integrate ��������� over a circle of radius r containing the point
�x� � y�� Z Z

r�Gdxdy �
Z Z

��x� x����y � y��dxdy � �

Using Green�s formula� the left hand side becomes

� �
Z Z

r�Gdxdy �
I
rG � nds �

I �G

�r
ds �

�G

�r
��r�

�Remember that the normal to the circle is in the direction of the radius r�� Thus

r
�G

�r
�

�

��
� ���������

Substituting G�r� from �������	� we have

c� �
�

��
� �������
�

���



c� is still arbitrary and for convenience we let c� � ��
The Green�s function is now

G�r� �
�

��
ln r� ���������

To obtain the solution of ���������� we use Green�s formula againZ Z �
ur�G�Gr�u

	
dxdy �

I
�urG�Gru� � nds�

The closed line integral�
I
� represents integration over the entire domain� and thus we can

take a circle of radius r and let r��� We would like to have a vanishing contribution from
the boundary� This will require that as r��� u will behave in such a way that

lim
r��

I
�urG�Gru� � nds � �

or

lim
r��

I �
ru

�

��r
� r

��
ln r

�u

�r

�
d� � �

or

lim
r��

�
u� r ln r

�u

�r

�
� �� ���������

With this� the solution is

u�r� �
Z Z

f�r��G�r% r��dr�� ���������

The Green�s function ��������� is also useful in solving Poisson�s equation on bounded
domains� Here we discuss the following two examples�

Example Obtain Green�s function for a bounded two dimensional domain subject to homo�
geneous boundary conditions�

We start by taking Green�s function for in�nite two dimensional domain and add to it a
function to satisfy the boundary conditions� i�e�

G�r% r�� �
�

��
ln jr � r�j� g�r� r�� ���������

where
r�g � � ������	��

subject to nonhomogeneous boundary conditions� For example� if G � � on the boundary�
this will mean that

g � � �

��
ln jr � r�j� on the boundary� ������	��

The function g can be found by methods to solve Laplace�s equation�

Example Solve Poisson�s equation on the upper half plane�

r�u � f� y � �� ������	��

���



subject to
u�x� �� � h�x�� ������		�

Green�s function will have to satisfy

r�G � ��r � r�� ������	��

G�x� �% x�� y�� � �� ������	
�

The idea here is to take the image of the source at �x�� y�� about the boundary y � �� The
point is �x���y��� We now use the so called method of images� Find Green�s function for
the combination of the two sources� i�e�

r�G � ��r � r��� ��r � r��� ������	��

where r�� � �x���y��� is the image of r��
The solution is clearly �principle of superposition� given by

G �
�

��
ln jr � r�j � �

��
ln jr � r��j� ������	��

Now this function vanishes on the boundary �exercise�� This is the desired Green�s function
since ��r � r��� � � in the upper half plane and thus ������	�� reduces to ������	���

To solve ������	���������		� we� as usual� use Green�s formula

Z Z �
ur�G�Gr�u

	
dxdy �

I
�urG�Gru� � nds �

Z �

��

�
G
�u

�y
� u

�G

�y

������
y��

dx�

since the normal n is in the direction of�y� Therefore when using ������	
� and the derivative
of ������	��

�G

�y

�����
y���

� �
y
	

�x� x��� � y�
������	��

we get

u�r� �
Z Z

f�r��G�r% r��dr� �
Z �

��
h�x��

y
	

�x� x��� � y�
dx�� ������	��

��	



Problems

�� Derive Green�s function for Poisson�s equation on in�nite three dimensional space� What
is the condition at in�nity required to ensure vanishing contribution from the boundary
integral�

�� Show that Green�s function ������	�� satis�es the boundary condition ������	
��

	� Use ������	�� to obtain the solution of Laplace�s equation on the upper half plane subject
to

u�x� �� � h�x�

�� Use the method of eigenfunction expansion to determine G�r% r�� if

r�G � ��r � r��� � � x � �� � � y � �

subject to the following boundary conditions

G��� y% r�� � Gx��� y% r�� � Gy�x� �% r�� � Gy�x� �% r�� � �


� Solve the above problem inside a unit cube with zero Dirichlet boundary condition on
all sides�

�� Derive Green�s function for Poisson�s equation on a circle by using the method of images�

�� Use the above Green�s function to show that Laplace�s equation inside a circle of radius
� with

u�r� �� � h��� for r � �

is given by Poisson�s formula

u�r� �� �
�

��

Z �	

�
h����

�� � r�

r� � �� � ��r cos�� � ���
d���

�� Determine Green�s function for the right half plane and use it to solve Poisson�s equation�

�� Determine Green�s function for the upper half plane subject to

�G

�y
� � on y � ��

Use it to solve Poisson�s equation
r�u � f

�u

�y
� h�x�� on y � ��

Ignore the contributions at in�nity�

��� Use the method of images to solve

r�G � ��r � r��

in the �rst quadrant with G � � on the boundary�

���



���� Wave Equation on In�nite Domains

Consider the wave equation

��u

�t�
� c�r�u�Q�x� t� ��������

with initial conditions

u�x� �� � f�x� ��������

ut�x� �� � g�x� ������	�

where x � �x� y� z�� The spatial domain here is in�nite� i�e� x�R�� The solution for semi�
in�nite or �nite domains can be obtained using the method of images from this most general
case�

If we consider a concentrated source at x � x� � �x�� y�� z�� and at t � t�� The Green�s
function G�x� t% x�� t�� is the solution to

��G

�t�
� c�r�G� ��x� x����t� t��� ��������

Since the time variable increases in one direction� we require

G�x� t% x� t�� � � for t � t� �causality principle� ������
�

We may also translate the time variable to the origin so that

G�x� t% x� t�� � G�x� t� t�% x�� �� ��������

We will solve for the Green�s function G using Fourier transforms since the domain is in�nite�
Hence� we need the following results about Fourier transforms�

f�x� y� z� �
Z Z Z

F �w�� w�� w��e
�i�w�
 w�
 w�	��x
 y
 z	 dw� dw� dw� ��������

or f�x� �
Z Z Z

F �w�e�iw�x dw

and

��




F �w� �
�

�����

Z Z Z
f�x�eiw�x dx where dx � dxdydz ��������

For the delta function� the results are

F ���x� x��� �
�

�����

Z Z Z
��x� x��e

iw�x dx �
eiw�x�

�����
��������

and �formally�

��x� x�� �
Z Z Z eiw�x�

�����
e�iw�x dw �

�

�����

Z Z Z
e�iw��x�x�	 dw� ���������

We take the Fourier transform of the Green�s function G�w� t% x�� t�� and solve for it from
the system

��G

�t�
� c�r�G � ��x� x����t� t���

G�x� t� x�� t�� � � if t � t��

���������

We get the following O�D�E��

��G

�t�
� c�w�G �

eiw�x�

�����
��t� t�� where w� � w � w� ���������

with

G�w� t% x�� t�� � � for t � t� �������	�

So for t � t��

��G

�t�
� c�w�G � �� ���������

Hence� the transform of the Green�s function is

G �

��
�

� t � t�

A cos cw�t� t�� �B sin cw�t� t�� t � t�

�������
�

���



Since G is continuous at t � t�� A � �

To solve for B� we integrate the O�D�E�

Z t��

t��

�
��G

�t�
� c�w�G �

eiw�x�

�����
��t� t��

�
dt

So
�G

�t

�����
t��

t��

� � �
eiw�x�

�����
� but

�G

�t

�����
t��

� �� so

cwB cos cw�t� t��
���t�� �

eiw�x�

�����
� B �

eiw�x�

cw�����
�

Using the inverse transform of G �
eiw�x�

cw�����
sin cw�t� t���

we get

G�x� t% x�� t�� �

��
�

� t � t�

�

�����

Z �

��

Z �

��

Z �

��
e�iw��x�x�	 sin cw�t� t��

cw
dw t � t�

���������

where w � �w�
� � w�

� � w�
��

��� � jwj

To evaluate the integral
�

�����

Z �

��

Z �

��

Z �

��
e�iw��x�x�	 sin cw�t� t��

cw
dw�

we introduce spherical coordinates with the origin w � �� � � � corresponding to the w�

axis� and we integrate in the direction �x� x��� This yields w � �x� x�� � jwj jx� x�j cos��
and letting � � jx� x�j we obtain w � �x� x�� � w� cos�� With the angle � measured from
the positive w� axis� the volume dierential becomes

dw � dw� dw� dw� � w� sin� d� d� dw�

and the integration limits for in�nite space become � � � � �� � � � � ��� � � w ���
Our integrand is independent of � �based on our selection of coordinates� yielding

G�x� t% x�� t�� �
�

�����

Z �

�

Z 	

�

e�iw� cos � sin cw�t� t��

cw
w� sin� d� dw� ���������

Integrating �rst with respect to �

���



G�x� t% x�� t�� �
�

i�c�����

Z �

�
sin cw�t� t��

Z 	

�
e�iw� cos ��iw� sin�� d� dw

�
�

i�c�����

Z �

�
sin cw�t� t��

h
e�iw� cos � j	�

i
dw

�
�

i�c�����

Z �

�
sin cw�t� t��

h
eiw� � e�iw�

i
� �z �

��i sinw�

dw

�
�

�c�����

Z �

�
sin�w�� sin cw�t� t�� dw

�
�

�c�����

Z �

�
�cosw ��� c�t� t���� cosw ��� c�t� t���� dw

Since
�

��

Z �

��
e�iwzdw � ��z�� using the real part of e�iwz and the evenness of the cosine

function we see

Z �

�
coswz dz � ��z�� ���������

Hence

G�x� t% x�� t�� �
�

����c
����� c�t� t���� ���� c�t� t���� for t � t� ���������

Since � � c�t� t�� � �� we get

G�x� t% x�� t�� �

��
�

� t � t�

�

����c
���� c�t� t��� t � t�

���������

where � � jx� x�j

To solve the wave equation

��u

�t�
� c�r�u�Q�x� t�� u�x� �� � f�x�� ut�x� �� � g�x�� ���������

using Green�s function� we proceed as follows�
We have a linear dierential operator

���



L �
��

�t�
� c�r� ���������

where
L � L� � c�L� �������	�

with

L� �
��

�t�
���������

and

L� � r� �������
�

We have the following Green�s formulae for L� and L��

Z t�

t�
�uL�v � vL�u� dt � uvt � vut

����t�
t�

% ���������

Z Z Z
�uL�v � vL�u� dx �

Z Z
�urv � vru� � n ds ���������

Since Lu � Q�x� t�

and LG � ��x� x����t� t���

and uLv � vLu � uL�v � vL�u� c��uL�v � vL�u��

we seeZ t�

t�

Z Z Z
�uLv � vLu� dx dt �

Z Z Z
�uvt � vut�

����t�
t�

dx� c�
Z t�

t�

Z Z
�urv � vru� � n ds dt

���������

It can be shown that Maxwell�s reciprocity holds spatially for our Green�s function� provided
the elasped times between the points x and x� are the same� In fact� for the in�nite domain�

G�x� t% x�� t�� �

��
�

� t � t�

�

���cjx� x�j� �jx� x�j � c�t� t��� t � t�

���



or

G�x� t% x�� t�� �

��
�

� t � t�

�

���cjx� � xj� �jx� � xj � c�t� � t�� t � t�

which is
� G�x�� t% x� t�� ���������

We now let u � u�x� t� be the solution to

Lu � Q�x� t�

subject to

u�x� �� � f�x�� ut�x� �� � g�x��

and
v � G�x� t�% x�� t� � G�x�� t�% x� t�

be the solution to
Lv � ��x� x����t� t��

subject to homogenous boundary conditions and the causality principle

G�x� t�% x�� t� � � for t� � t

If we integrate in time from t� � � to t� � t
� �a point just beyond the appearance of our
point source at �t � t��� we get

Z t��

�

Z Z Z
�u�x� t���x� x����t� t���G�x� t�% x�� t�Q�x� t�� dx dt �

Z Z Z
�uGt �Gut�

����t��� dx� c�
Z t��

�

�Z Z
�urG�Gru� � n ds

�
dt ������	��

At t � t
� � Gt � G � �� and using reciprocity� we see

u�x�� t�� �
Z t��

�

Z Z Z
G�x� t�% x� t�Q�x� t� dx dt

�
�



�
Z Z Z

�ut�x� ��G�x�� t�% x� ��� u�x� ��Gt�x�� t�% x� ��� dx

�c�
Z t��

�

�Z Z
�u�x� t�rG�x�� t�% x� t��G�x�� t�% x� t�ru�x� t�� � n ds

�
dt ������	��

Taking the limit as t
� � t and interchanging �x�� t�� with �x� t� yields

u�x� t� �
Z t

�

Z Z Z
G�x� t% x�� t��Q�x�� t�� dx� dt�

�
Z Z Z

�g�x��G�x� t% x�� ��� f�x��Gt��x� t% x�� ��� dx�

�c�
Z t

�

�Z Z
�u�x�� t��rx�G�x� t% x�� t���G�x� t% x�� t��rx�u�x�� t��� � n ds�

�
dt��

������	��

where rx� represents the gradient with respect to the source location x��
The three terms represent respectivley the contributions due to the source� the initial con�
ditions� and the boudnary conditions� For our in�nte domain� the last term goes away�
Hence� our complete solution for the in�nite domain wave equation is given by

u�x� t� �
�

���c

Z t

�

Z Z Z �

jx� x�j� �jx� x�j � c�t� t���Q�x�� t�� dx� dt�

�
�

���c

Z Z Z g�x��

jx� x�j� �jx� x�j � c�t� t���� f�x��

jx� x�j
�

�t�
� �jx� x�j � c�t� t��� dx�

������		�

�
�



���� Heat Equation on In�nite Domains

Now consider the Heat Equation

�u

�t
� �r�u�Q�x� t� ��������

with initial condition

u�x� �� � g�x� ��������

where x � �x� y� z�� The spatial domain is in�nite� i�e� x�R�� If we consider a concentrated
source at x � x� � �x�� y�� z�� and at t � t�� the Green�s function is the solution to

�G

�t
� �r�G� ��x� x����t� t�� ������	�

From the causality principle

G�x� t% x�� t�� � � if t � t� ��������

We may also translate the time variable to the origin so

G�x� t% x� t�� � G�x� t� t�% x�� �� ������
�

We will solve for the Green�s function G using Fourier transofrom because we lack boundary
conditions� For our in�nite domain� we take the Fourier transforms of the Green�s function
G�w� t% x�� t���

We get the following O�D�E�

�G

�t
� �w�G �

eiw�x�

�����
��t� t�� ��������

where w� � w � w�
with

G�w� t% x�� t�� � � for t � t� ��������

So� for t � t��
�G

�t
� �w�G � � ��������

�
�



Hence� the transform of the Green�s function is

G �

��
�

� t � t�

Ae��w
��t�t�	 t � t�

��������

By integrating the ODE form t�� to t
� we get

G�t
� ��G�t�� � �
eiw�x�

�����
� but G�t�� � � �� so

A � eiw�x�������� ���������

Hence�

G�w� t% x�� t�� �
eiw�x�

�����
e��w

��t�t�	 ���������

Using the inverse Fourier transform� we get

G�x� t% x�� t�� �

��
�

� t � t�

Z �

��
e��w

��t�t�	

�����
e�iw��x�x�	dw t � t�

���������

Recognizing this Fourier transofrm of the Green�s fucntion as a Gaussian� we obtain

G�x� t% x�� t�� �

��
�

� t � t�

�

�����

�
�

��t� t��

����
e
� jx�x�j�

���t�t�� t � t�

�������	�

To solve the heat equation

�u

�t
� �r�u�Q�x� t� ���������

using Green�s fucntion we proceed as follows� We have a linear dierential operator

L �
�

�t
� �r� �������
�

where

�
	



L � L� � �L� ���������

with

L� �
�

�t
���������

and

L� � r�� ���������

We have the following Green�s formula for L��

Z Z Z
�uL�v � vL�u� dx �

Z Z
�urv � vru� � nds� ���������

However� for L�� since it is not self�adjoint� we have no such result� Nevertheless� integrating
by parts� we obtain

Z t�

t�
uL� v dt � uv

����t�
t�

�
Z t�

t�
vL� u dt ���������

So that if we introduce the adjoint opeator L�� � ����t

We obtain

Z t�

t�
�uL��v � vL�u� � �uv

����t�
t�

���������

Since
Lu � Q�x� t�� LG � ��x� x����t� t��� ���������

de�ning

L� � � �

�t
� �r�� �������	�

we see
Z t�

t�

Z Z Z
�uL�v � vL�u� dx dt � �

Z Z Z
uv
����t�
t�

dx�

�
Z t�

t�

Z Z
�vru� urv� � n ds dt� ���������

�
�



To get a representation for u�x� t� in terms of G� we consider the source�varying Green�s
function� which using translation� is

G�x� t�% x�� t� � G�x� �t% x�� �t�� �������
�

and by causality
G�x� t�% x�� t� � � if t � t�� ���������

Hence �
�

�t
� �r�

�
G�x� t�% x�� t� � ��x� x����t� t�� ���������

So
L� �G�x� t�% x�� t�� � ��x� x����t� t�� ���������

where G�x� t�% x�� t� is called the adjoint Green�s fucntion� Furthermore�

G��x� t% x�� t�� � G�x� t% x�� t�� and if t � t�� G
� � G � �� ���������

We let u � u�x� t� be the solution to Lu � Q�x� t� subject to u�x� �� � g�x��

and v � G�x� t�% x�� t� be the source�varying Green�s function satisfying

L�v � ��x� x����t� t�� ������	��

subject to homogenous boundary conditions and

G�x� t�% x�� t� � � for t� � t� ������	��

Integrating from t� � � to t� � t
� � our Green�s formula becomes

Z t��

�

Z Z Z
�u��x� x����t� t���G�x� t�% x�� t�Q�x� t�� dx dt

�
Z Z Z

u�x� ��G�x� t�% x�� �� dx

��
Z t��

�

Z Z
�G�x� t�% x�� t�ru� urG�x� t�% x�� t�� � n ds dt� ������	��

Since G � � for t � t�� solving for u�x� t�� replacing the upper limit of integration t
� with
t�� and using reciprocity �interchanging x and x�� t and t�� yields

�





u�x� t� �
Z t

�

Z Z Z
G�x� t% x�� t��Q�x�� t�� dx� dt�

�
Z Z Z

G�x� t% x�� ��g�x�� dx�

��
Z t

�

Z Z
�G�x� t% x�� t��rx�u�x�� t��� u�x�� t��rx�G�x� t% x�� t��� � n ds� dt� ������		�

From our previous result� the solution for the in�nite domain heat equation is given by

u�x� t� �
Z t�

�

Z Z Z � �

����t� t��

����
e
� jx�x�j�

���t�t��Q�x�� t�� dx� dt�

�
Z Z Z

f�x��



�

���t

����

e�
jx�x�j�

��t dx� ������	��

�
�



����� Green�s Function for the Wave Equation on a Cube

Solving the wave equation in R� with Cartesian coordinates� we select a rectangular domain

D � fx � �x� y� z� � x� ��� �� � y� ��� �� � z� ��� ��g

So that the wave equation is

��u�x� t�

�t�
� c�r�u�x� t� � Q�x� t� x�D� t � � ���������

u�x� t� � f�x� t� x��D ���������

u�x� �� � g�x�� x�D �������	�

ut�x� �� � h�x� x�D ���������

De�ning the wave operator

L �
��

�t�
� c�r� �������
�

we seek a Green�s function G�x� t� x�� t�� such that

L �G�x� t% x�� t��� � ��x� x����t� t�� ���������

Also�

G�x� t% x�� t�� � � if t � t� ���������

G�x� t
� % x�� t�� � �� ���������

and
Gt�x� t



� % x�� t�� � ��x� x�� ���������

We require the translation property

�
�



G�x� t% x�� t�� � G�x� t� t�% x�� �� ����������

and spatial symmetry

G�x� t� t�% x�� �� � G�x�� t� t�% x� �� ����������

provided the dierence t� t� is the same in each case�

We have shown that the solution to the wave equation is

u�x� t� �
Z t

�

Z Z Z
D
G�x� t% x�� t��Q�x�� t�� dx� dt�

�
Z Z Z

D
�h�x��G�x� t% x�� ��� g�x��Gt��x� t% x�� ��� dx� ����������

�c�
Z t

�

�Z Z
�D

f�x�� t��rx�G�x� t% x�� t���G�x� t% x�� t��rx�f�x�� t��� � n ds�
�
dt�

We therefore must �nd the Green�s function to solve our problem� We begin by �nding the
Green�s function for the Helmholtz operator

)Lu � r�u� c�u � � ��������	�

Where u is now a spatial function of x on D� The required Green�s function Gc�x� x��
satis�es

r�Gc � c�Gc � ��x � x�� ����������

with homogeneous boundary conditions

Gc�x� � � for x��D ��������
�

We will use eigenfunction expansion to �nd the Green�s function for the Helmholtz equation�
We let the eigenpairs f�N � �Ng be such that

r��N � ��
N�N � � ����������

�
�



Hence the eigenfunctions are

��mn�x� y� z� � sin

�
��x

�

�
sin

�
m�y

�

�
sin

�
n�z

�

�
����������

and the eigenvlaues are

��mn � ��

�
�� �

�

��

�

�
m

�

��

�

�
m

�

��
�
� for �� m� n � �� �� 	� � � � ����������

We know that these eigenfunctions form a complete� orthonormal set which satisfy the
homogeneous bounday conditions on �D� Since Gc also satis�es the homogeneous boundary
conditions� we expand Gc in terms of the eigenfunctions �N � where N represents the index
set f�� m� ng� so that

Gc�x% x�� �
X
N

AN�N�x� ����������

Substituting into the PDE ���������� we see

X
N

AN �c
� � ��

N��N�x� � ��x� x�� ����������

If we multiply the above equation by �M and integrate over D� using the fact that

Z Z Z
D
�N�M dx � �NM ����������

AN �
�N�x��

c� � ��
N

����������

So that

Gc�x% x�� �
X
N

�N�x���N�x�

c� � ��
N

��������	�

There are two apparent problems with this form� The �rst is� it appears to not be symmetric
in x and x�% However� if we note that the Helmholtz equation involved no complex numbers
explicitly� �N and �N are distinct eigenfunctions corresponding to the eigenvalue �N and

�
�



that the above expansion contains both the terms
�N �x���N�x�

c� � ��
N

and
�N�x���N�x�

c� � ��
N

� so that

the Green�s function is� in fact� symmetric and real�

We also see a potential problem when ��
N � c�� As a function of c� Gc is analytic except

for simple poles at c � ��N � for which we have nontrivial solutions to the homogeneous
Helmholtz equation we must use modi�ed Green�s functions as before when zero was an
eigenvalue�
We now use the Green�s function for the Helmholtz equation to �nd G�x� t% x�� t��� the

Green�s function for the wave equation� We notice that Gc�x% x��e
�ic�t is a solution of the

wave equation for a point source located at x�� since

��

�t�

h
Gce

�ic�ti� c�r�
x

h
Gce

�ic�ti � �c�Gce
�ic�t � c�

h
�c� � ��x� x��

i
e�ic

�t

� �c���x� x��e
�ic�t

����������

So that

r�
x

h
Gce

�ic�ti� �

c�
��

�t�

h
Gce

�ic�ti � ��x� x��e
�ic�t ��������
�

Using the integral representation of the � function

��t� t�� �
�

��

Z �

��
e�icw�t�t�	dw ����������

and using linearlity we obtain

G�x� t% x�� t�� �
�

��

Z �

��
Gc�x% x��e

�ic��t�t�	d�c�� ����������

Although we have a form for the Green�s function� recalling the form for Gc� we note we
cannot integrate along the real axis due to the poles at the eigenvalues ��N � If we write the
expansion for Gc we get

G�x� t% x�� t�� �
�

��

Z �

��

X
N

�N�x��N �x��

c� � ��
N

e�ic
��t�t�	d�c�� ����������

Changing variables with wN � c�N � w � c�

���



G�x� t% x�� t�� �
c�

��

X
N

�N�x��N�x��
Z �

��
e�iw�t�t�	

w�
N � w�

dw� ����������

We must integrate along a contour so that G�x� t% x�� t�� � � when t � t�� so we select
x � �i x � ���� �� as the contour� For t � t�� we close the contour with an �in�nite� semi�
circle in the lower half�plane without changing the value of the integral� and using Cauchy�s

formula we obtain
��

wN

sin�wN �t � t���� If t � t�� we clsoe the contour with a semi�circle in

the upper half�plane in which there are no poles� and the integral equals zero�

Hence

G�x� t% x�� t�� � c�
X
N

sin�wN�t� t���

wN

H�t� t���N �x���N�x� �������	��

where H is the Heaviside function� and wN � c�N �

���



SUMMARY

Let Ly � ��py��� � qy�

 To get Green�s function for Ly � f� � � x � ��

y���� h�y
���� � y���� h�y

���� � ��

Step �� Solve
Lu � �� u���� h�u

���� � ��

and
Lv � �� v���� h�v

���� � ��

Step ��

G�x% s� �

�
u�s�v�x� � � s � x � �
u�x�v�s� � � x � s � ��

Step 	�

y �
Z �

�
G�x% s�f�s�ds�

where
LG � ��x� s��

G satis�es homogeneous boundary conditions and a jump

�G�s
% s�

�x
� �G�s�% s�

�x
� � �

p�s�
�

 To solve Ly � �ry � f� � � x � ��

y�x� � �
Z �

�
G�x% s�r�s�y�s�ds� F �x��

where

F �x� �
Z �

�
G�x% s�f�s�ds�

 Properties of Dirac delta function

 Fredholm alternative

���



 To solve Lu � f� � � x � �� u��� � A� u��� � B�

and � � � is not an eigenvalue�

Find G such that

LG � ��x� s�� G��% s� � A� G��% s� � B�

u�s� �
Z �

�
G�x% s�f�x�dx�BGx��% s�� AGx��% s�

 To solve Lu � f� � � x � � subject to homogeneous boundary conditions

and � � � is an eigenvalue�

Find )G such that

L )G � ��x� s�� vh�x�vh�s�R L
� v�h�x�dx

�

where vh is the solution of the homogeneous

Lvh � ��

The solution is

u�x� �
Z L

�
f�s� )G�x% s�ds�

 Solution of Poisson�s equation
r�u � f�r�

subject to homogeneous boundary conditions�

The Green�s function must be the solution of

r�G�r% r�� � ��x� x����y � y��

where
r � �x� y�

subject to the same homogeneous boundary conditions�

The solution is then
u�r� �

Z Z
f�r��G�r% r��dr��

��	



 To solve Poisson�s equation with nonhomogeneous boundary conditions

r�u � f�r�

u � h�r�� on the boundary�

Green�s function as before

r�G � ��x� x����y � y���

with homogeneous boundary conditions

G�r% r�� � ��

The solution is then

u�r� �
Z Z

f�r��G�r% r��dr� �
I
h�r��rG � nds�

 To solve
r�u � f� on in�nite space with no boundary�

Green�s function should satisfy

r�G � ��x� x����y � y��� on in�nite space with no boundary�

For � dimensions

G�r� �
�

��
ln r�

lim
r��

�
u� r ln r

�u

�r

�
� ��

u�r� �
Z Z

f�r��G�r% r��dr��

For 	 dimensional space

G � � �

��
r�

For upper half plane

G �
�

��
ln

�x� x��
� � �y � y��

�

�x� x��� � �y � y���
� method of images

u�r� �
Z Z

f�r��G�r% r��dr� �
Z �

��
h�x��

y
	

�x� x��� � y�
dx��

���



 To solve the wave equation on in�nite domains

��u

�t�
� c�r�u�Q�x� t�

u�x� �� � f�x�

ut�x� �� � g�x�

G�x� t% x�� t�� �

��
�

� t � t�

�

����c
���� c�t� t��� t � t�

u�x� t� �
�

���c

Z t

�

Z Z Z �

jx� x�j� �jx� x�j � c�t� t���Q�x�� t�� dx� dt�

�
�

���c

Z Z Z g�x��

jx� x�j� �jx� x�j � c�t� t���� f�x��

jx� x�j
�

�t�
� �jx� x�j � c�t� t��� dx�

 To solve the heat equation on in�nite domains

�u

�t
� �r�u�Q�x� t�

u�x� �� � g�x�

G�x� t% x�� t�� �

��
�

� t � t�

�

�����

�
�

��t� t��

����
e
� jx�x�j�

���t�t�� t � t�

u�x� t� �
Z t�

�

Z Z Z � �

����t� t��

����
e
� jx�x�j�

���t�t��Q�x�� t�� dx� dt�

�
Z Z Z

f�x��



�

���t

����

e�
jx�x�j�

��t dx�

��




 To solve the Wave Equation on a Cube

��u�x� t�

�t�
� c�r�u�x� t� � Q�x� t� x�D� t � �

u�x� t� � f�x� t� x��D

u�x� �� � g�x�� x�D

ut�x� �� � h�x� x�D

D � fx � �x� y� z� � x� ��� �� � y� ��� �� � z� ��� ��g

G�x� t% x�� t�� � c�
X
N

sin�wN�t� t���

wN

H�t� t���N�x���N�x�

where H is the Heaviside function� wN � c�N � and �N and �N are the eigenvalues and
eigenfunctions of Helmholtz equation�

u�x� t� �
Z t

�

Z Z Z
D
G�x� t% x�� t��Q�x�� t�� dx� dt�

�
Z Z Z

D
�h�x��G�x� t% x�� ��� g�x��Gt��x� t% x�� ��� dx�

�c�
Z t

�

�Z Z
�D

f�x�� t��rx�G�x� t% x�� t���G�x� t% x�� t��rx�f�x�� t��� � n ds�
�
dt�

���



�� Laplace Transform

���� Introduction

Laplace transform has been introduced in an ODE course� and is used especially to solve
ODEs having pulse sources� In this chapter we review the Laplace transform and its proper�
ties and show how it is used in analyzing PDEs� It should be noted that most problems that
can be analyzed by Laplace transform� can also be analyzed by one of the other techniques
in this book�
De�nition ��� The Laplace transform of a function f�t�� denoted by L�f�t�� is de�ned by

L�f � �
Z �

�
f�t�e�stdt� ��������

assuming the integral converges �real part of s � ���
We will denote the Laplace transform of f by F �s�� exactly as with Fourier transform�

The Laplace transform of some elementary functions can be obtained by de�nition� See
Table at the end of this Chapter�

The inverse transform is given by

f�t� � L���F �s�� �
�

��i

Z �
i�

��i�
F �s�estds� ��������

where � is chosen so that f�t�e��t decays su�ciently rapidly as t � � � i�e� we have to
compute a line integral in the complex s�plane�

From the theory of complex variables� it can be shown that the line integral is to the
right of all singularities of F �s�� To evaluate the integral we need Cauchy�s theorem from the
theory of functions of a complex variable which states that if f�s� is analytic �no singularities�
at all points inside and on a closed contour C� then the closed line integral is zero�I

C
f�s�ds � �� ������	�

If the function has singularities at sn� then we use the Residue theorem�

�

��i

I
C
F �s�estds �

X
n

residue �F �sn�e
snt�� ��������

Example If F �s� �
P �s�

Q�s�
has simple poles at sn �i�e� Q�sn� � �� sn all simple zeros�� then

residue
�
F �sn�e

snt
	
�

P �sn�

Q��sn�
esnt�

Example Find L��

�
s� � �s� �

s�s� � ��

�
�

���



The zeros of denominator are s � ���i� The residues are

f�t� �
�

�
e� �

i� � �i� �

�i � i eit �
��i�� � �i� �

��i � i e�it

� �� 	 � �i

�
eit �

	� �i

�
e�it

� �� 	 cos t � � sin t

We can use the table and partial fractions to get the same answer�

Laplace transform of derivatives

L
�
df

dt

�
�

Z �

�

df

dt
e�stdt

� f�t�e�stj�� � s
Z �

�
f�t�e�stdt

� sF �s�� f���

������
�

L
�
d�f

dt�

�
� sL

�
df

dt

�
� f ����

� s �sF �s�� f����� f ����

� s�F �s�� sf���� f ����

��������

Convolution theorem

L�� �F �s�G�s�� � g � f �
Z t

�
g���f�t� ��d�� ��������

Dirac delta function

L ���t� a�� �
Z �

�
��t� a�e�stdt � e�sa� a � �� ��������

therefore
L ���t�� � �� ��������

Example Use Laplace transform to solve

y�� � �y � sin 	x� ���������

y��� � y���� � �� ���������

���



Taking Laplace transform and using the initial conditions we get

s�Y �s� � �Y �s� �
	

s� � �
�

Thus

Y �s� �
	

�s� � ���s� � ��
� ���������

The method of partial fractions yields

Y �s� �
	�


s� � �
� 	�


s� � �
�

	

��

�

s� � ��
� �




	

s� � 	�
�

Using the table� we have

y�x� �
	

��
sin �x� �



sin 	x� �������	�

Example Consider a mass on a spring with m � k � � and y��� � y���� � �� At each of
the instants t � n�� n � �� �� �� � � � the mass is struck a hammer blow with a unit impulse�
Determine the resulting motion�

The initial value problem is

y�� � y �
�X
n��

��t� n��� ���������

y��� � y���� � �� �������
�

The transformed equation is

s�Y �s� � Y �s� �
�X
n��

e�n	s�

Thus

Y �s� �
�X
n��

e�n	s

s� � �
� ���������

and the inverse transform

y�t� �
�X
n��

H�t� n�� sin�t� n��� ���������

���



Problems

�� Use the de�nition to �nd Laplace transform of each

a� ��

b� e�t�

c� sin�t�

d� cos�t�

e� sinh�t�

f� cosh�t�

g� H�t� a�� a � ��

�� Prove the following properties

a� L ��tf�t�� � dF

ds
�

b� L
h
eatf�t�

i
� F �s� a��

c� L �H�t� a�f�t� a�� � e�asF �s�� a � ��

	� Use the table of Laplace transforms to �nd

a� t�e��t�

b� t sin �t�

c� H�t� ���

d� e�t sin 
t�

e� te��t cos t�

f� t�H�t� ���

g� ��
�

� t � �

t� � � t � �

t � � t

�� Find the inverse Laplace transform for each

a�
�

s� � �
�

b�
e��s

s� � �
�

���



c�
s

s� � �s� �
�

d�
�s� �

s� � �s� �
�

e�
s

s� � �s� 

�


� Use the tables to �nd the inverse Laplace transform

a�
�

�s� ���
�

b�
�

�s� � ���
�

c�
s� �

s�s� � ��

�
�� 
e��s

	
�

�� Solve the following ODEs

a�
dy

dt
� y � �� y��� � ��

b�
dy

dt
� 	y �

�
�e�t t � �
� t � �

y��� � ��

c�
d�y

dt�
� y � cos t� y��� � y���� � ��

���



���� Solution of Wave Equation

In this section� we show how to use Laplace transform to solve the one dimensional wave
equation in the semi�in�nite and �nite domain cases�

Consider the vibrations of a semi�in�nite string caused by the boundary condition� i�e�

utt � c�uxx � �� � � x ��� t � �� ��������

u�x� �� � �� ��������

ut�x� �� � �� ������	�

u��� t� � f�t�� ��������

A boundary condition at in�nity would be

lim
x��u�x� t� � �� ������
�

Using Laplace transform for the time variable� we get upon using the zero initial conditions�

s�U�x� s�� c�Uxx � �� ��������

This is an ordinary dierential equation in x �assuming s is �xed�� Transforming the bound�
ary conditions�

U��� s� � F �s�� ��������

lim
x��U�x� s� � �� ��������

The general solution of �������� subject to the boundary conditions ����������������� is

U�x� s� � F �s�e�
x
c
s� ��������

To invert this transform� we could use the table

u�x� t� � H


t� x

c

�
f


t� x

c

�
� ���������

The solution is zero for x � ct� since the force at x � � causes a wave travelling at speed c
to the right and it could not reach a point x farther than ct�

Another possibility to invert the transform is by using the convolution theorem� This

requires the knowledge of the inverse of e�
x
c
s� which is �



t� x

c

�
� Thus

u�x� t� �
Z t

�
f�����t� x

c
� ��d� �

��
�

� t �
x

c

f


t� x

c

�
t �

x

c
�

which is the same as ����������

���



We now turn to the vibrations of a �nite string�

utt � c�uxx � �� � � x � L� t � �� ���������

u�x� �� � �� ���������

ut�x� �� � �� �������	�

u��� t� � �� ���������

u�L� t� � b�t�� �������
�

Again� the Laplace transform will lead to the ODE

s�U�x� s�� c�Uxx � �� ���������

U��� s� � �� ���������

U�L� s� � B�s�� ���������

for which the solution is

U�x� s� � B�s�
sinh sx

c

sinh sL
c

� ���������

In order to use the convolution theorem� we need to �nd the inverse transform of

G�x� s� �
sinh sx

c

sinh sL
c

� ���������

Using �������� and �������� we have

g�x� t� �
�

��i

Z �
i�

��i�

sinh sx
c

sinh sL
c

estds �
X
n

residue
�
G�x� sn�e

snt
	
� ���������

The zeros of denominator are given by

sinh
L

c
s � �� ���������

and all are imaginary�

i
L

c
sn � n�� n � ������ � � �

or
sn � �in� c

L
� n � ������ � � � �������	�

The case n � � does not yield a pole since the numerator is also zero�

g�x� t� �
��X

n���

sinh x
c
��in� c

L
�

L
c
cosh L

c
��in� c

L
�
e�in	

c
L
t �

�X
n��

sinh x
c
�in� c

L
�

L
c
cosh L

c
�in� c

L
�
ein	

c
L
t

Using the relationship between the hyperbolic and circular functions

sinh ix � i sin x� cosh ix � cos x� ���������

��	



we have

g�x� t� �
�X
n��

�
c

L
����n
� sin

n�

L
x sin

n�

L
ct� �������
�

Thus by the convolution theorem� the solution is

u�x� t� �
Z t

�

� �X
n��

�c

L
����n
� sin

n�

L
x sin

n�

L
c�t� ��

�
b���d�

�
�X
n��

�c

L
����n
� sin

n�

L
x
Z t

�
b��� sin

n�

L
c�t� ��d�

���������

or

u�x� t� �
�X
n��

An�t� sin
n�

L
x� ���������

where

An�t� �
�c

L
����n
�

Z t

�
b��� sin

n�

L
c�t� ��d�� ���������

Another way to obtain the inverse transform of ��������� is by expanding the quotient

using Taylor series of
�

�� �
� with � � e��L

c
s

sinh sx
c

sinh sL
c

�
e
x
c
s � e�

x
c
s

e
L
c
s
�
�� e��L

c
s
	

�
�X
n��

h
e�s

�nL�x�L
c � e�s

�nL�x�L
c

i
�

���������

Since the inverse transform of an exponential function is Dirac delta function� we have

g�x� t� �
�X
n��

�
�


t� �nL� x� L

c

�
� �



t� �nL � x� L

c

��
� ������	��

The solution is now

u�x� t� �
Z t

�
b���

�X
n��

�
�


t� �nL� x � L

c
� �

�
� �



t� �nL� x � L

c
� �

��
������	��

or

u�x� t� �
�X
n��

�
b


t� �nL� x � L

c

�
� b



t� �nL � x� L

c

��
� ������	��

This is a dierent form of the same solution�

���



Problems

�� Solve by Laplace transform

utt � c�uxx � �� �� � x ���

u�x� �� � f�x��

ut�x� �� � ��

�� Solve by Laplace transform

utt � uxx � �� �� � x ���

u�x� �� � ��

ut�x� �� � g�x��

	� Solve by Laplace transform

utt � c�uxx � �� � � x � L�

u�x� �� � ��

ut�x� �� � ��

ux��� t� � ��

u�L� t� � b�t��

�� Solve the previous problem with the boundary conditions

ux��� t� � ��

ux�L� t� � b�t��


� Solve the heat equation by Laplace transform

ut � uxx� � � x � L�

u�x� �� � f�x��

u��� t� � u�L� t� � ��

��




SUMMARY

De�nition of Laplace transform

L�f � � F �s� �
Z �

�
f�t�e�stdt�

assuming the integral converges �real part of s � ���

The inverse transform is given by

f�t� � L���F �s�� �
�

��i

Z �
i�

��i�
F �s�estds�

where � is chosen so that f�t�e��t decays su�ciently rapidly as t�� �

Properties and examples are in the following table�

���



Table of Laplace Transforms

f�x� F �s�

�
�

s

tn �n � ��� n�

sn
�

ta
��a � ��

sa
�

eat
�

s� a

sin�t
�

s� � ��

cos�t
s

s� � ��

sinh�t
�

s� � ��

cosh�t
s

s� � ��

df

dt
sF �s�� f���

d�f

dt�
s�F �s�� sf���� f ����

dnf

dtn
snF �s�� sn��f���� � � �� f �n��	���

tf�t� �dF
ds

tnf�t� ����nd
nF

dsn

f�t�

t

Z �

s
F ���d�

eatf�t� F �s� a�

H�t� b�f�t� b�� b � � e�bsF �s�Z t

�
f�t� ��g���d� F �s�G�s�

Z t

�
f���d�

F �s�

s

��t� b�� b 
 � e�bs

���



�� Finite Di�erences

���� Taylor Series

In this chapter we discuss �nite dierence approximations to partial derivatives� The ap�
proximations are based on Taylor series expansions of a function of one or more variables�

Recall that the Taylor series expansion for a function of one variable is given by

f�x � h� � f�x� �
h

��
f ��x� �

h�

��
f ��x� � � � � ��������

The remainder is given by

f �n	���
hn

n�
� ���x� x� h�� ��������

For a function of more than one independent variable we have the derivatives replaced by
partial derivatives� We give here the case of � independent variables

f�x � h� y � k� � f�x� y� �
h

��
fx�x� y� �

k

��
fy�x� y� �

h�

��
fxx�x� y�

�
�hk

��
fxy�x� y� �

k�

��
fyy�x� y� �

h�

	�
fxxx�x� y� �

	h�k

	�
fxxy�x� y�

�
	hk�

	�
fxyy�x� y� �

k�

	�
fyyy�x� y� � � � �

������	�
The remainder can be written in the form

�

n�

�
h
�

�x
� k

�

�y

�n
f�x� �h� y � �k�� � � � � �� ��������

Here we used a subscript to denote partial dierentiation� We will be interested in obtaining
approximation about the point �xi� yj� and we use a subscript to denote the function values
at the point� i�e� fi j � f�xi� yj��

The Taylor series expansion for fi
� about the point xi is given by

fi
� � fi � hf �i �
h�

��
f ��i �

h�

	�
f ��i � � � � ������
�

The Taylor series expansion for fi
� j
� about the point �xi� yj� is given by

fi
� j
� � fij � �hxfx � hyfy�i j � �
h�x
�
fxx � hxhyfxy �

h�y
�
fyy�i j � � � � ��������

Remark� The expansion for fi
� j about �xi� yj� proceeds as in the case of a function of one
variable�

���



���� Finite Di
erences

An in�nite number of dierence representations can be found for the partial derivatives of
f�x� y�� Let us use the following operators�

forward dierence operator �xfi j � fi
� j � fi j ��������

backward dierence operator rxfi j � fi j � fi�� j ��������

centered dierence �xfi j � fi
� j � fi�� j ������	�

�xfi j � fi
��� j � fi���� j ��������

averaging operator �xfi j � �fi
��� j � fi���� j��� ������
�

Note that
�x � �x�x� ��������

In a similar fashion we can de�ne the corresponding operators in y�
In the following table we collected some of the common approximations for the �rst

derivative�

Finite Dierence Order �see next chapter�

�

hx
�xfi j O�hx�

�

hx
rxfi j O�hx�

�

�hx
�xfi j O�h�x�

�

�hx
��	fi j � �fi
� j � fi
� j� �

�

hx
��x � �

�
��

x�fi j O�h�x�

�

�hx
�	fi j � �fi�� j � fi�� j� �

�

hx
�rx �

�

�
r�

x�fi j O�h�x�

�

hx
��x�x � �

	�
�x�

�
x�fi j O�h�x�

�

�hx

�xfi j
� � �

�
��x

O�h�x�

Table �� Order of approximations to fx

The compact fourth order three point scheme deserves some explanation� Let fx be v�
then the method is to be interpreted as

�� �
�

�
��x�vi j �

�

�hx
�xfi j ��������

or
�

�
�vi
� j � �vi j � vi�� j� �

�

�hx
�xfi j � ��������

���



This is an implicit formula for the derivative
�f

�x
at �xi� yj�� The vi j can be computed from

the fi j by solving a tridiagonal system of algebraic equations�
The most common second derivative approximations are

fxxji j � �

h�x
�fi j � �fi
� j � fi
� j� �O�hx� ��������

fxxji j � �

h�x
�fi j � �fi�� j � fi�� j� �O�hx� ���������

fxxji j � �

h�x
��xfi j �O�h�x� ���������

fxxji j � �

h�x

��xfi j
� � �

��
��x

�O�h�x� ���������

Remarks�
�� The order of a scheme is given for a uniform mesh�
�� Tables for dierence approximations using more than three points and approximations

of mixed derivatives are given in Anderson� Tannehill and Pletcher ����� � p��
��
	� We will use the notation

)��x �
��x
h�x
� �������	�

The centered dierence operator can be written as a product of the forward and backward
operator� i�e�

��xfi j � rx�xfi j� ���������

This is true since on the right we have

rx �fi
� j � fi j� � fi
� j � fi j � �fi j � fi�� j�

which agrees with the right hand side of ���������� This idea is important when one wants
to approximate �p�x�y��x��� at the point xi to a second order� In this case one takes the
forward dierence inside and the backward dierence outside �or vice versa�

rx



pi
yi
� � yi

�x

�
�������
�

and after expanding again

pi
yi
� � yi

�x
� pi��

yi � yi��

�x
�x

���������

or
piyi
� � �pi � pi��� yi � pi��yi��

��x��
� ���������

Note that if p�x� � � then we get the well known centered dierence�

���



A
+

∆ x O
+
α ∆ x C

+

B+

∆ y

β ∆ y

D+

y

x

Figure ��� Irregular mesh near curved boundary

���� Irregular Mesh

Clearly it is more convenient to use a uniform mesh and it is more accurate in some cases�
However� in many cases this is not possible due to boundaries which do not coincide with the
mesh or due to the need to re�ne the mesh in part of the domain to maintain the accuracy�
In the latter case one is advised to use a coordinate transformation�

In the former case several possible cures are given in� e�g� Anderson et al ������� The
most accurate of these is a development of a �nite dierence approximation which is valid
even when the mesh is nonuniform� It can be shown that

uxx

����
O

	� �

�� � ��hx



uc � uO
�hx

� uO � uA
hx

�
����	���

Similar formula for uyy� Note that for � � � one obtains the centered dierence approx�
imation�

We now develop a three point second order approximation for
�f

�x
on a nonuniform mesh�

�f

�x
at point O can be written as a linear combination of values of f at A�O� and B�

�f

�x

����
O
� C�f�A� � C�f�O� � C�f�B� � ����	���

A

+
∆ x O

+
α ∆ x B

+ x

Figure �	� Nonuniform mesh

We use Taylor series to expand f�A� and f�B� about the point O�

f�A� � f�O ��x� � f�O���xf ��O� �
�x�

�
f ���O�� �x�

�
f ����O�� � � � ����	�	�

���



f�B� � f�O � ��x� � f�O� � ��xf ��O� �
���x�

�
f ���O� �

���x�

�
f ����O� � � � � ����	���

Thus

�f

�x

����
O
� �C� � C� � C��f�O� � ��C� � C���x

�f

�x

����
O
� �C� � ��C��

�x�

�

��f

�x�

����
O

� ���C� � C��
�x�

�

��f

�x�

����
O
� � � �

����	�
�

This yields the following system of equations

C� � C� � C� � � ����	���

�C� � �C� �
�

�x
����	���

C� � ��C� � � ����	���

The solution is

C� � � �

�� � ���x
� C� �

�� �

��x
� C� �

�

���� ���x
����	���

and thus

�f

�x
�
���f�A� � ��� � ��f�O� � f�B�

��� � ���x
�
�

�
�x�

��f

�x�

����
O
� � � � ����	����

Note that if the grid is uniform then � � � and this becomes the familiar centered dierence�

���� Thomas Algorithm

This is an algorithm to solve a tridiagonal system of equations�
BBB�

d� a�
b� d� a�

b� d� a�
� � �

�
CCCA u �

�
BBB�

c�
c�
c�
� � �

�
CCCA ��������

The �rst step of Thomas algorithm is to bring the tridiagonal M by M matrix to an upper
triangular form

di � di � bi
di��

ai��� i � �� 	� � � � �M ��������

ci � ci � bi
di��

ci��� i � �� 	� � � � �M� ������	�

The second step is to backsolve

uM �
cM
dM

��������

uj �
cj � aj uj
�

dj
� j � M � �� � � � � �� ������
�

The following subroutine solves a tridiagonal system of equations�

���



subroutine tridg�il�iu�rl�d�ru�r�

c

c solve a tridiagonal system

c the rhs vector is destroyed and gives the solution

c the diagonal vector is destroyed

c

integer il�iu

real rl����d����ru����r���

C

C the equations are

C rl�i��u�i����d�i��u�i��ru�i��u�i����r�i�

C il subscript of first equation

C iu subscript of last equation

C

ilp�il��

do � i�ilp�iu

g�rl�i�	d�i���

d�i��d�i��g�ru�i���

r�i��r�i��g�r�i���

� continue

c

c Back substitution

c

r�iu��r�iu�	d�iu�

do 
 i�ilp�iu

j�iu�i�il

r�j���r�j��ru�j��r�j����	d�j�


 continue

return

end

���� Methods for Approximating PDEs

In this section we discuss several methods to approximate PDEs� These are certainly not all
the possibilities�

������ Undetermined coe�cients

In this case� we approximate the required partial derivative by a linear combination of
function values� The weights are chosen so that the approximation is of the appropriate

��	



order� For example� we can approximate uxx at xi� yj by taking the three neighboring
points�

uxxji j � Aui
� j � Bui j � Cui�� j ����
�����

Now expand each of the terms on the right in Taylor series and compare coe�cients �all
terms are evaluated at i j�

uxx � A

�
u� hux �

h�

�
uxx �

h�

�
uxxx �

h�

��
uxxxx � � � �

�

�Bu � C

�
u� hux �

h�

�
uxx � h�

�
uxxx �

h�

��
uxxxx � � � �

� ����
�����

Upon collecting coe�cients� we have

A �B � C � � ����
���	�

A� C � � ����
�����

�A� C�
h�

�
� � ����
���
�

This yields

A � C �
�

h�
����
�����

B �
��
h�

����
�����

The error term� is the next nonzero term� which is

�A� C�
h�

��
uxxxx �

h�

��
uxxxx� ����
�����

We call the method second order� because of the h� factor in the error term� This is the
centered dierence approximation given by ����������

������ Integral Method

The strategy here is to develop an algebraic relationship among the values of the unknowns at
neighboring grid points� by integrating the PDE� We demonstrate this on the heat equation
integrated around the point �xj� tn�� The solution at this point can be related to neighboring
values by integration� e�g�

Z xj
�x��

xj��x��

�Z tn
�t

tn
ut dt

�
dx � �

Z tn
�t

tn

�Z xj
�x��

xj��x��
uxx dx

�
dt� ����
�����

Note the order of integration on both sides�Z xj
�x��

xj��x��
�u�x� tn ��t�� u�x� tn� � dx � �

Z tn
�t

tn
�ux�xj ��x��� t�� ux�xj ��x��� t�� dt�

����
�����

���



Now use the mean value theorem� choosing xj as the intermediate point on the left and
tn ��t as the intermediate point on the right�

�u�xj� tn ��t�� u�xj� tn� � �x � � �ux�xj ��x��� tn ��t�� ux�xj ��x��� tn ��t�� �t�
����
���	�

Now use a centered dierence approximation for the ux terms and we get the fully implicit
scheme� i�e�

un
�
j � unj
�t

� �
un
�
j
� � �un
�

j � un
�
j��

��x��
� ����
�����

���� Eigenpairs of a Certain Tridiagonal Matrix

Let A be an M by M tridiagonal matrix whose elements on the diagonal are all a� on the
superdiagonal are all b and on the subdiagonal are all c�

A �

�
BBBBBB�

a b
c a b

c a b

c a

�
CCCCCCA ��������

Let � be an eigenvalue of A with an eigenvector v� whose components are vi� Then the
eigenvalue equation

Av � �v ��������

can be written as follows

�a� ��v� � bv� � �

cv� � �a� ��v� � bv� � �

� � �

cvj�� � �a� ��vj � bvj
� � �

� � �

cvM�� � �a� ��vM � ��

If we let v� � � and vM
� � �� then all the equations can be written as

cvj�� � �a� ��vj � bvj
� � �� j � �� �� � � � �M� ������	�

The solution of such second order dierence equation is

vj � Bmj
� � Cmj

� ��������

where m� and m� are the solutions of the characteristic equation

c� �a� ��m� bm� � �� ������
�

��




It can be shown that the roots are distinct �otherwise vj � �B � Cj�mj
� and the boundary

conditions forces B � C � ��� Using the boundary conditions� we have

B � C � � ��������

and
BmM
�

� � CmM
�
� � �� ��������

Hence 

m�

m�

�M
�

� � � e�s	i� s � �� �� � � � �M� ��������

Therefore
m�

m�

� e�s	i��M
�	� ��������

From the characteristic equation� we have

m�m� �
c

b
� ���������

eliminating m� leads to

m� �

r
c

b
es	i��M
�	� ���������

Similarly for m��

m� �

r
c

b
e�s	i��M
�	� ���������

Again from the characteristic equation

m� �m� � ��� a��b� �������	�

giving

� � a� b

r
c

b

�
es	i��M
�	 � e�s	i��M
�	

	
� ���������

Hence the M eigenvalues are

�s � a� �b

r
c

b
cos

s�

M � �
� s � �� �� � � � �M� �������
�

The jth component of the eigenvector is

vj � Bmj
� � Cmj

� � B


c

b

�j�� �
ejs	i��M
�	 � e�js	i��M
�	

	
� ���������

that is

vj � �iB


c

b

�j��
sin

js�

M � �
� ���������

Use centered dierence to approximate the second derivative in X ����X � � to estimate
the eigenvalues assuming X��� � X��� � ��
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�� Finite Di�erences

���� Introduction

In previous chapters we introduced several methods to solve linear �rst and second order
PDEs and quasilinear �rst order hyperbolic equations� There are many problems we cannot
solve by those analytic methods� Such problems include quasilinear or nonlinear PDEs which
are not hyperbolic� We should remark here that the method of characteristics can be applied
to nonlinear hyperbolic PDEs� Even some linear PDEs� we cannot solve analytically� For
example� Laplace�s equation

uxx � uyy � � ��	�����

inside a rectangular domain with a hole �see �gure ���

x

y

Figure ��� Rectangular domain with a hole

x

y

L

H

Figure �
� Polygonal domain

or a rectangular domain with one of the corners clipped o�
For such problems� we must use numerical methods� There are several possibilities� but

here we only discuss �nite dierence schemes�
One of the �rst steps in using �nite dierence methods is to replace the continuous

problem domain by a dierence mesh or a grid� Let f�x� be a function of the single inde�
pendent variable x for a � x � b� The interval �a� b� is discretized by considering the nodes
a � x� � x� � � � � � xN � xN
� � b� and we denote f�xi� by fi� The mesh size is xi
� � xi

���



and we shall assume for simplicity that the mesh size is a constant

h �
b� a

N � �
��	�����

and
xi � a� ih i � �� �� � � � � N � � ��	���	�

In the two dimensional case� the function f�x� y� may be speci�ed at nodal point �xi� yj�
by fij� The spacing in the x direction is hx and in the y direction is hy�

���� Di
erence Representations of PDEs

I� Truncation error
The dierence approximations for the derivatives can be expanded in Taylor series� The

truncation error is the dierence between the partial derivative and its �nite dierence rep�
resentation� For example

fx

����
ij
� �

hx
�xfij � fx

����
ij
� fi
�j � fij

hx
��	�����

� �fxx
����
ij

hx
��
� � � � ��	�����

We use O�hx� which means that the truncation error satis�es jT� E�j � Kjhxj for hx � ��
su�ciently small� where K is a positive real constant� Note that O�hx� does not tell us the
exact size of the truncation error� If another approximation has a truncation error of O�h�x��
we might expect that this would be smaller only if the mesh is su�ciently �ne�

We de�ne the order of a method as the lowest power of the mesh size in the truncation
error� Thus Table � �Chapter �� gives �rst through fourth order approximations of the �rst
derivative of f �

The truncation error for a �nite dierence approximation of a given PDE is de�ned as
the dierence between the two� For example� if we approximate the advection equation

�F

�t
� c

�F

�x
� � � c � � ��	���	�

by centered dierences
Fij
� � Fij��

��t
� c

Fi
�j � Fi��j

��x
� � ��	�����

then the truncation error is

T� E� �

�
�F

�t
� c

�F

�x

�
ij

� Fij
� � Fij��

��t
� c

Fi
�j � Fi��j

��x
��	���
�

� ��

�
�t�

��F

�t�
� c

�

�
�x�

��F

�x�
� higher powers of �t and �x�

���



We will write
T�E� � O��t���x�� ��	�����

In the case of the simple explicit method

un
�
j � unj
�t

� k
unj
� � �unj � unj��

��x��
��	�����

for the heat equation
ut � kuxx ��	�����

one can show that the truncation error is

T�E� � O��t��x�� ��	�����

since the terms in the �nite dierence approximation ��	����� can be expanded in Taylor
series to get

ut � kuxx � utt
�t

�
� kuxxxx

��x��

��
� � � �

All the terms are evaluated at xj� tn� Note that the �rst two terms are the PDE and all other
terms are the truncation error� Of those� the ones with the lowest order in �t and �x are
called the leading terms of the truncation error�

Remark� See lab	 �	��	taylor�ms� for the use of Maple to get the truncation error�

II� Consistency
A dierence equation is said to be consistent or compatible with the partial dierential

equation when it approaches the latter as the mesh sizes approaches zero� This is equivalent
to

T�E�� � as mesh sizes � � �

This seems obviously true� One can mention an example of an inconsistent method �see e�g�
Smith ����
��� The DuFort�Frankel scheme for the heat equation ��	����� is given by

un
�
j � un��

j

��t
� k

unj
� � un
�
j � un��

j � unj��

�x�
� ��	������

The truncation error is

k

��

��u

�x�

����n
j
�x� � ��u

�t�

����n
j



�t

�x

��

� �

�

��u

�t�

����n
j
��t�� � � � � ��	������

If �t��x approach zero at the same rate such that
�t

�x
� constant � �� then the method is

inconsistent �we get the PDE
ut � ��utt � kuxx

instead of ��	�������

���



III� Stability
A numerical scheme is called stable if errors from any source �e�g� truncation� round�o�

errors in measurements� are not permitted to grow as the calculation proceeds� One can
show that DuFort�Frankel scheme is unconditionally stable� Richtmeyer and Morton give a
less stringent de�nition of stability� A scheme is stable if its solution remains a uniformly
bounded function of the initial state for all su�ciently small �t�

The problem of stability is very important in numerical analysis� There are two methods
for checking the stability of linear dierence equations� The �rst one is referred to as Fourier
or von Neumann assumes the boundary conditions are periodic� The second one is called
the matrix method and takes care of contributions to the error from the boundary�

von Neumann analysis
Suppose we solve the heat equation ��	����� by the simple explicit method ��	������ If a
term �a single term of Fourier and thus the linearity assumption�

�nj � eatneikmxj ��	������

is substituted into the dierence equation� one obtains after dividing through by eatneikmxj

ea�t � � � �r �cos � � �� � �� �r sin�
�

�
��	����	�

where

r � k
�t

��x��
��	������

� � km�x � km �
��m

�L
�m � �� � � � �M� ��	����
�

where M is the number of �x units contained in L� The stability requirement is

jea�tj � � ��	������

implies

r � �

�
� ��	������

The term jea�tj also denoted G is called the ampli�cation factor� The simple explicit method
is called conditionally stable� since we had to satisfy the condition ��	������ for stability�

One can show that the simple implicit method for the same equation is unconditionally
stable� Of course the price in this case is the need to solve a system of equations at every
time step� The following method is an example of an unconditionally unstable method�

un
�
j � un��

j

��t
� k

unj
� � �unj � unj��

�x�
� ��	������

This method is second order in time and space but useless� The DuFort Frankel is a way to
stabilize this second order in time scheme�

IV� Convergence

���



A scheme is called convergent if the solution to the �nite dierence equation approaches
the exact solution to the PDE with the same initial and boundary conditions as the mesh
sizes apporach zero� Lax has proved that under appropriate conditions a consistent scheme
is convergent if and only if it is stable�

Lax equivalence theorem
Given a properly posed linear initial value problem and a �nite dierence approximation

to it that satis�es the consistency condition� stability �a�la Richtmeyer and Morton �������
is the necessary and su�cient condition for convergence�

V� Modi�ed Equation
The importance of the modi�ed equation is in helping to analyze the numerical eects of

the discretization� The way to obtain the modi�ed equation is by starting with the truncation
error and replacing the time derivatives by spatial dierentiation using the equation obtained
from truncation error� It is easier to discuss the details on an example� For the heat equation

ut � kuxx � �

we have the following explicit method

un
�
j � unj
�t

� k
unj
� � �unj � unj��

��x��
� �� ��	������

The truncation error is �all terms are given at tn� xj�

ut � kuxx � ��t

�
utt �

��x��

��
kuxxxx � � � � ��	������

This is the equation we have to use to eliminate the time derivatives� After several dieren�
tiations and substitutions� we get

ut�kuxx �

�
��

�
k��t � k

��x��

��

�
uxxxx�

�
�

	
k� ��t�� � �

��
k��t ��x�� �

�

	��
k ��x��

�
uxxxxxx�� � �

It is easier to organize the work in a tabular form� We will show that later when discussing
�rst order hyperbolic�

Note that for r �
�

�
� the truncation error is O��t���x��� The problem is that one has

to do 	 times the number of steps required by the limit of stability� r �
�

�
�

Note also there are NO odd derivative terms� that is no dispersive error �dispersion
means that phase relation between various waves are distorted� or the same as saying that
the ampli�cation factor has no imaginary part��

Note that the exact ampli�cation can be obtained as the quotient

Gexact �
u�t��t� x�

u�t� x�
� e�r�

�

��	������

See �gure �� for a plot of the ampli�cation factor G versus ��

���



exact r=1/2   

explicit r=1/2
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Figure ��� Ampli�cation factor for simple explicit method

���� Heat Equation in One Dimension

In this section we apply �nite dierences to obtain an approximate solution of the heat
equation in one dimension�

ut � kuxx� � � x � �� t � �� ��	�	���

subject to the initial and boundary conditions

u�x� �� � f�x�� ��	�	���

u��� t� � u��� t� � �� ��	�	�	�

Using forward approximation for ut and centered dierences for uxx we have

un
�
j � unj � k

�t

��x��
�unj�� � �unj � unj
��� j � �� �� � � � � N � �� n � �� �� � � � ��	�	���

where unj is the approximation to u�xj� tn�� the nodes xj� tn are given by

xj � j�x� j � �� �� � � � � N ��	�	�
�

tn � n�t� n � �� �� � � � ��	�	���

and the mesh spacing

�x �
�

N
� ��	�	���

see �gure ���
The solution at the points marked by � is given by the initial condition

u�j � u�xj� �� � f�xj�� j � �� �� � � � � N ��	�	���

���



t

x

Figure ��� Uniform mesh for the heat equation

and the solution at the points marked by � is given by the boundary conditions

u��� tn� � u�xN � tn� � ��

or
un� � unN � �� ��	�	���

The solution at other grid points can be obtained from ��	�	���

un
�
j � runj�� � ��� �r�unj � runj
�� ��	�	����

where r is given by ��	������� The implementation of ��	�	���� is easy� The value at any grid
point requires the knowledge of the solution at the three points below� We describe this by
the following computational molecule ��gure ����

j−1 , n j , n j+1 , n

j , n+1

Figure ��� Computational molecule for explicit solver

We can compute the solution at the leftmost grid point on the horizontal line representing
t� and continue to the right� Then we can advance to the next horizontal line representing
t� and so on� Such a scheme is called explicit�

��	



The time step �t must be chosen in such a way that stability is satis�ed� that is

�t � k

�
��x�� � ��	�	����

We will see in the next sections how to overcome the stability restriction and how to obtain
higher order method�

������ Implicit method

One of the ways to overcome this restriction is to use an implicit method

un
�
j � unj � k

�t

��x��
�un
�

j�� � �un
�
j � un
�

j
� �� j � �� �� � � � � N � �� n � �� �� � � �

��	�	�����
The computational molecule is given in �gure ��� The method is unconditionally stable�

since the ampli�cation factor is given by

G �
�

� � �r��� cos ��
��	�	�����

which is � � for any r� The price for this is having to solve a tridiagonal system for each
time step� The method is still �rst order in time� See �gure �� for a plot of G for explicit
and implicit methods�

j , n

j , n+1j−1 , n+1 j+1 , n+1

Figure ��� Computational molecule for implicit solver

������ DuFort Frankel method

If one tries to use centered dierence in time and space� one gets an unconditionally unstable
method as we mentioned earlier� Thus to get a stable method of second order in time� DuFort
Frankel came up with�

���



exact r=1/2    

implicit       
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Figure ��� Ampli�cation factor for several methods

un
�
j � un��

j

��t
� k

unj
� � un
�
j � un��

j � unj��

�x�
��	�	�����

We have seen earlier that the method is explicit with a truncation error

T�E� � O

�
�t�� �x��



�t

�x

���
� ��	�	�����

The modi�ed equation is

ut � kuxx �

�
�

��
k�x� � k�

�t�

�x�

�
uxxxx

�

�
�

	��
k�x� � �

	
k��t� � �k

�t�

�x�

�
uxxxxxx � � � �

��	�	���	�

The ampli�cation factor is given by

G �
�r cos � �

q
�� �r� sin� �

� � �r
��	�	�����

and thus the method is unconditionally stable�
The only drawback is the requirement of an additional starting line�

������ Crank�Nicholson method

Another way to overcome this stability restriction� we can use Crank�Nicholson implicit
scheme

�run
�
j�� � ��� � r�un
�

j � run
�
j
� � runj�� � ���� r�unj � runj
�� ��	�	�	���

��




This is obtained by centered dierencing in time about the point xj� tn
���� On the right we
average the centered dierences in space at time tn and tn
�� The computational molecule
is now given in the next �gure �����

i−1 , j i , j i+1 , j

i , j+1i−1 , j+1 i−1 , j+1

Figure ��� Computational molecule for Crank Nicholson solver

The method is unconditionally stable� since the denominator is always larger than nu�
merator in

G �
�� r��� cos ��

� � r��� cos ��
� ��	�	�	���

It is second order in time �centered dierence about xj� tn
���� and space� The modi�ed
equation is

ut � kuxx �
k�x�

��
uxxxx �

�
�

��
k��t� �

�

	��
k�x�

�
uxxxxxx � � � � ��	�	�	�	�

The disadvantage of the implicit scheme �or the price we pay to overcome the stability
barrier� is that we require a solution of system of equations at each time step� The number
of equations is N � ��

We include in the appendix a Fortran code for the solution of ��	�	������	�	�	� using the
explicit and implicit solvers� We must say that one can construct many other explicit or
implicit solvers� We allow for the more general boundary conditions

ALux �BLu � CL� on the left boundary ��	�	�	���

ARux �BRu � CR� on the right boundary� ��	�	�	�
�

Remark� For a more general boundary conditions� see for example Smith ����
�� we need to
�nite dierence the derivative in the boundary conditions�

���



������ Theta ��� method

All the method discussed above �except DuFort Frankel� can be written as

un
�
j � unj
�t

� k
��un
�

j
� � �un
�
j � un
�

j�� � � ��� ���unj
� � �unj � unj���

�x�
��	�	�����

For � � � we get the explicit method ��	�	����� for � � �� we get the implicit method

���	����� and for � �
�

�
we have Crank Nicholson ���	�	����

The truncation error is
O
�
�t� �x�

	
except for Crank Nicholson as we have seen earlier �see also the modi�ed equation below��

If one chooses � �
�

�
� �x�

��k�t
�the coe�cient of uxxxx vanishes�� then we get O

�
�t�� �x�

	
�

and if we choose the same � with
�x�

k�t
�
p
�� �the coe�cient of uxxxxxx vanishes�� then

O
�
�t�� �x�

	
�

The method is conditionally stable for � � � �
�

�
with the condition

r � �

�� ��
��	�	�����

and unconditionally stable for
�

�
� � � ��

The modi�ed equation is

ut � kuxx �


�

��
k�x� � �� � �

�
�k��t

�
uxxxx

�
�
��� � � �

�

	
�k��t� �

�

�
�� � �

�
�k��t�x� �

�

	��
k�x�

�
uxxxxxx � � � �

��	�	���	�

������ An example

We have used the explicit solver program to approximate the solution of

ut � uxx� � � x � �� t � � ��	�	�
���

u�x� �� �

��
�

�x � � x �
�

�

���� x�
�

�
� x � �

��	�	�
���

u��� t� � u��� t� � �� ��	�	�
�	�
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initial solution and at time=0.025

Figure ��� Numerical and analytic solution with r � �
 at t � ���
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Figure �	� Numerical and analytic solution with r � �
 at t � �


using a variety of values of r� The results are summarized in the following �gures�
The analytic solution �using separation of variables� is given by

u�x� t� �
�X
n��

ane
��n		�t sinn�x� ��	�	�
���

where an are the Fourier coe�cients for the expansion of the initial condition ��	�	�
����

an �
�

�n���
sin

n�

�
� n � �� �� � � � ��	�	�
�
�

The analytic solution ��	�	�
��� and the numerical solution �using �x � ��� r � �
� at times
t � ���
 and t � �
 are given in the two �gures ��� �	� It is clear that the error increases in
time but still smaller than �
� �����

���



On the other hand� if r � �
�� we see oscillations at time t � ���

 ��gure ��� which
become very large at time t � ��

 ��gure �
� and the temperature becomes negative at
t � ��
� ��gure ����
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Figure ��� Numerical and analytic solution with r � �
� at t � ���



Clearly the solution does not converge when r � �
�
The implicit solver program was used to approximate the solution of ��	�	�
��� subject

to
u�x� �� � ���� ��jx� ��j ��	�	�
���

and
ux��� t� � ���u��� t�� �
�� ��	�	�
���

u��� t� � ���� ��	�	�
���

Notice that the boundary and initial conditions do not agree at the right boundary� Because
of the type of boundary condition at x � �� we cannot give the eigenvalues explicitly� Notice
that the problem is also having inhomogeneous boundary conditions� To be able to compare
the implicit and explicit solvers� we have used Crank�Nicholson to solve ��	�	�
������	�	�
�	��
We plot the analytic and numerical solution with r � � at time t � �
 to show that the
method is stable �compare the following �gure �� to the previous one with r � �
���
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Figure �
� Numerical and analytic solution with r � �
� at t � ��
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���� Two Dimensional Heat Equation

In this section� we generalize the solution of the heat equation obtained in section ��	 to two
dimensions� The problem of heat conduction in a rectangular membrane is described by

ut � ��uxx � uyy�� � � x � L� � � y � H� t � � ��	�����

subject to
u�x� y� t� � g�x� y� t�� on the boundary ��	�����

u�x� y� �� � f�x� y�� � � x � L� � � y � H� ��	���	�

������ Explicit

To obtain an explicit scheme� we use forward dierence in time and centered dierences in
space� Thus

un
�
ij � unij

�t
� ��

uni��j � �unij � uni
�j

��x��
�
unij�� � �unij � unij
�

��y��
� ��	�������

or
un
�
ij � rxu

n
i��j � ��� �rx � �ry� u

n
ij � rxu

n
i
�j � ryu

n
ij�� � ryu

n
ij
�� ��	�������

where unij is the approximation to u�xi� yj� tn� and

rx � �
�t

��x��
� ��	�����	�

ry � �
�t

��y��
� ��	�������

The stability condition imposes a limit on the time step

��t

�
�

�x�
�

�

�y�

�
� �

�
��	�����
�

For the case �x � �y � d� we have

�t � �

��
d� ��	�������

which is more restrictive than in the one dimensional case� The solution at any point
�xi� yj� tn� requires the knowledge of the solution at all 
 points at the previous time step
�see next �gure ����

Since the solution is known at t � �� we can compute the solution at t � �t one point
at a time�

To overcome the stability restriction� we can use Crank�Nicholson implicit scheme� The
matrix in this case will be banded of higher dimension and wider band� There are other
implicit schemes requiring solution of smaller size systems� such as alternating direction� In
the next section we will discuss Crank Nicholson and ADI �Alternating Direction Implicit��

	��
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Figure ��� Computational molecule for the explicit solver for �D heat equation

������ Crank Nicholson

One way to overcome this stability restriction is to use Crank�Nicholson implicit scheme

un
�
ij � unij

�t
� �

��xu
n
ij � ��xu

n
�
ij

���x��
� �

��yu
n
ij � ��yu

n
�
ij

���y��
��	�������

The method is unconditionally stable� It is second order in time �centered dierence
about xi� yj� tn
���� and space�

It is important to order the two subscript in one dimensional index in the right direction
�if the number of grid point in x and y is not identical�� otherwise the bandwidth will increase�

Note that the coe�cients of the banded matrix are independent of time �if � is not a
function of t�� and thus one have to factor the matrix only once�

������ Alternating Direction Implicit

The idea here is to alternate direction and thus solve two one�dimensional problem at each
time step� The �rst step to keep y �xed

u
n
���
ij � unij
�t��

� �
�
)��xu

n
���
ij � )��yu

n
ij

	
��	���	���

In the second step we keep x �xed

un
�
ij � u

n
���
ij

�t��
� �

�
)��xu

n
���
ij � )��yu

n
�
ij

	
��	���	���

So we have a tridiagonal system at every step� We have to order the unknown dierently
at every step�

The method is second order in time and space and it is unconditionally stable� since the
denominator is always larger than numerator in

G �
�� rx��� cos �x�

� � rx��� cos �x�

�� ry��� cos �y�

� � ry��� cos �y�
� ��	���	�	�

	�	



The obvious extension to three dimensions is only �rst order in time and conditionally
stable� Douglas � Gunn developed a general scheme called approximate factorization to
ensure second order and unconditional stability�

Let
�uij � un
�

ij � unij ��	���	���

Substitute this into the two dimensional Crank Nicholson

�uij �
��t

�

n
)��x�uij �

)��y�uij � �)��xu
n
ij � �)��yu

n
ij

o
��	���	�
�

Now rearrange� 

�� rx

�
��x �

ry
�
��y

�
�uij �

�
rx�

�
x � ry�

�
y

	
unij ��	���	���

The left hand side operator can be factored

�� rx
�
��x �

ry
�
��y �



�� rx

�
��x

�

�� ry

�
��y

�
� rxry

�
��x�

�
y ��	���	���

The last term can be neglected because it is of higher order� Thus the method for two
dimensions becomes 


�� rx
�
��x

�
�u�ij �

�
rx�

�
x � ry�

�
y

	
unij ��	���	���



�� ry

�
��y

�
�uij � �u�ij ��	���	���

un
�
ij � unij ��uij ��	���	����

���� Laplace�s Equation

In this section� we discuss the approximation of the steady state solution inside a rectangle

uxx � uyy � �� � � x � L� � � y � H� ��	�
���

subject to Dirichlet boundary conditions

u�x� y� � f�x� y�� on the boundary� ��	�
���

We impose a uniform grid on the rectangle with mesh spacing �x� �y in the x� y
directions� respectively� The �nite dierence approximation is given by

ui��j � �uij � ui
�j

��x��
�
uij�� � �uij � uij
�

��y��
� �� ��	�
�	�

or �
�

��x��
�

�

��y��

�
uij �

ui��j � ui
�j

��x��
�
uij�� � uij
�

��y��
� ��	�
���
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Figure ��� Uniform grid on a rectangle
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Figure ��� Computational molecule for Laplace�s equation

For �x � �y we have
�uij � ui��j � ui
�j � uij�� � uij
�� ��	�
�
�

The computational molecule is given in the next �gure ����� This scheme is called �ve point
star because of the shape of the molecule�

The truncation error is
T�E� � O

�
�x���y�

	
��	�
���

and the modi�ed equations is

uxx � uyy � � �

��

�
�x�uxxxx ��y�uyyyy

	
� � � � ��	�
���

Remark� To obtain a higher order method� one can use the nine point star� which is of
sixth order if �x � �y � d� but otherwise it is only second order� The nine point star is

	�




given by

ui
� j
� � ui�� j
� � ui
� j�� � ui�� j�� � �
�x� � 
�y�

�x� ��y�
�ui
� j � ui�� j�

� �

�x� ��y�

�x� ��y�
�ui j
� � ui j���� ��ui j � �

��	�
���
For three dimensional problem the equivalent to �ve point star is seven point star� It is

given by

ui��jk � �uijk � ui
�jk

��x��
�
uij��k � �uijk � uij
�k

��y��
�
uijk�� � �uijk � uijk
�

��z��
� �� ��	�
���

The solution is obtained by solving the linear system of equations

Au � b� ��	�
����

where the block banded matrix A is given by

A �

�
!!!!!!�

T B � � � � �
B T B
� B T B
� � �
� � � � � B T

�
""""""� ��	�
����

and the matrices B and T are given by

B � �I ��	�
����

T �

�
!!!!!!�

� �� � � � � �
�� � ��
� �� � �� �
� � �
� � � � � �� �

�
""""""� ��	�
��	�

and the right hand side b contains boundary values� If we have Poisson�s equation then b
will also contain the values of the right hand side of the equation evaluated at the center
point of the molecule�

One can use Thomas algorithm for block tridiagonal matrices� The system could also
be solved by an iterative method such as Jacobi� Gauss�Seidel or successive over relaxation
�SOR�� Such solvers can be found in many numerical analysis texts� In the next section� we
give a little information on each�

Remarks�
�� The solution is obtained in one step since there is no time dependence�
�� One can use ELLPACK �ELLiptic PACKage� a research tool for the study of numerical

methods for solving elliptic problems� see Rice and Boisvert ������� to solve any elliptic
PDEs�
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������ Iterative solution

The idea is to start with an initial guess for the solution and iterate using an easy system
to solve� The sequence of iterates x�i	 will converge to the answer under certain conditions
on the iteration matrix� Here we discuss three iterative scheme� Let�s write the coe�cient
matrix A as

A � D � L� U ��	�
�����

then one can iterate as follows

Dx�i
�	 � �L� U�x�i	 � b� i � �� �� �� � � � ��	�
�����

This scheme is called Jacobi�s method� At each time step one has to solve a diagonal
system� The convergence of the iterative procedure depends on the spectral radius of the
iteration matrix

J � D���L � U�� ��	�
���	�

If ��J� � � then the iterative method converges �the speed depends on how small the spectral
radius is� �spectral radius of a matrix is de�ned later and it relates to the modulus of the
dominant eigenvalue�� If ��J� 
 � then the iterative method diverges�

Assuming that the new iterate is a better approximation to the answer� one comes up
with Gauss�Seidel method� Here we suggest the use of the component of the new iterate as
soon as they become available� Thus

�D � L�x�i
�	 � Lx�i	 � b� i � �� �� �� � � � ��	�
�����

and the iteration matrix G is
G � �D � L���U ��	�
���
�

We can write Gauss Seidel iterative procedure also in componentwise

x
�i
�	
k �

�

akk

�
�bk � k��X

j��

akjx
�i
�	
j �

nX
j�k
�

akjx
�i	
j

�
A ��	�
�����

It can be shown that if
jaiij 


X
j 	�i
jaijj� for all i

and if for at least one i we have a strict inequality and the system is irreducible �i�e� can�t
break to subsystems to be solved independently� then Gauss Seidel method converges� In
the case of Laplace�s equation� these conditions are met�

The third method we mention here is called successive over relaxation or SOR for short�
The method is based on Gauss�Seidel� but at each iteration we add a step

u
�k
�	�
ij � u

�k	�
ij � �

�
u
�k
�	
ij � u

�k	�
ij

	
��	�
�����

For � � � � � the method is really under relaxation� For � � � we have Gauss Seidel and
for � � � � � we have over relaxation� There is no point in taking � 
 �� because the
method will diverge� It can be shown that for Laplace�s equation the best choice for � is

�opt �
�

� �
p
�� ��

��	�
�����

	��



where

� �
�

� � ��

�
cos

�

p
� �� cos

�

q

�
� ��	�
�����

� �
�x

�y
� grid aspect ratio ��	�
������

and p� q are the number of �x��y respectively�

���� Vector and Matrix Norms

Norms have the following properties

Let

x � y � Rn x �� � � � R

�� k x k � �

�� k�x k � j� j k x k

	� k x � y k � k x k � k y k

Let x �

�
BBBB�

x�
x�
���
xn

�
CCCCA then the  integral! norms are�

k x k� �
nX
i��

j xi j one norm

k x k� �

vuut nX
i��

x�i two norm �Euclidean norm�

k x kk �

�
nX
i��

jxijk
���k

k norm

k x k� � max
�
 i
n

j xi j in�nity norm

Example

	��



x �

�
B� �	

�



�
CA

k x k� � ��

k x k� � 

p
� 	 �����

k x k� � 
��

k x k� � 
�
��

���
k x k� � 


Matrix Norms

Let A be an m � n non�zero matrix �i�e� A � Rm � Rn�� Matrix norms have the
properties

�� kA k 
 �

�� k�A k � j� j kA k

	� kA � B k � kA k � kB k

De�nintion

A matrix norm is consistent with vector norms k � ka on Rn and k � kb on Rm with
A � Rm � Rn if

kAx kb � kA k k x ka
and for the special case that A is a square matrix

kAx k � kA k k x k

De�nintion

Given a vector norm� a corresponding matrix norm for square matrices� called the
subordindate matrix norm is de�ned as

l� u� b�� �z �
least upper bound

�A� � max
�x 	���

�kAx k
k x k

�

Note that this matrix norm is consistent with the vector norm because

	��



kAx k � l� u� b� �A� � k x k
by de�nition� Said another way� the l� u� b� �A� is a measure of the greatest magni�cation a
vector x can obtain� by the linear transformation A� using the vector norm k � k�

Examples

For k � k� the subordinate matrix norm is

l� u� b�� �A� � max
�x 	���

kAx k�
k x k�

� max
�x 	���

�
maxifj Pn

k�� aik xk jg
maxkfj xk jg

�

� max
i
f

nX
k��

j aik j g

where in the last equality� we�ve chosen xk � sign�aik�� The  inf!�norm is sometimes
written

kA k� � max
�
 i
n

nX
j��

j aij j

where it is readily seen to be the maximum row sum�

In a similar fashion� the  one!�norm of a matrix can be found� and is sometimes referred
to as the column norm� since for a given m� n matrix A it is

kAk� � max
�
j
n

fja�jj� ja�jj� � � �� jamjjg

For k � k� we have

l� u� b�� �A� � max
�x 	���

kAx k�
k x k�

� max
�x 	���

s
xTATAx

xTx
�
q
�max �AT A�

�
q
��ATA�

where �max is the magnitude of the largest eigenvalue of the symmetric matrix ATA� and
where the notation ��ATA� is referred to as the  spectral radius! of ATA� Note that if
A � AT then

l�u�b���A� � kAk� �
q
���A� � ��A�

	��



The spectral radius of a matrix is smaller than any consistent matrix norm of that matrix�
Therefore� the largest �in magnitude� eigenvalue of a matrix is the least upper bound of all
consistent matrix norms� In mathematical terms�

l� u� b� �kAk� � j�max j � ��A�

where k � k is any consistent matrix norm�
To see this� let ��i � xi� be an eigenvalue�eigenvector pair of the matrix A� Then we have

Axi � �i xi

Taking consistent matrix norms�

kAxik � k�i xik � j�ij kxik
Because k � k is a consistent matrix norm

kAk k xik 
 kAxik � j�ij kxik
and dividing out the magnitude of the eigenvector �which must be other than zero�� we have

kAk 
 j�i j for all �i

Example Given the matrix

A �

�
BBBBBB�

��� � 	 � �
� �� � 
 �
	 	 �� �
 ��
� �� � �� �	

 
 �	 �� ��

�
CCCCCCA

we can determine the various norms of the matrix A�

The � norm of A is given by�

kAk� � max
j
fja�
jj� ja�
jj� � � �� ja
jjg

The matrix A can be seen to have a ��norm of 	� from the 	rd column�

The � norm of A is given by�

kAk� � max
i
fjai
�j� jai
�j� � � �� jai
jg

and therefore has the � norm of 	� which comes from its 	rd row�

To �nd the  two!�norm of A� we need to �nd the eigenvalues of ATA which are�


��	�	�� �
������� ����	�
	� ������
�� and 
�������

	��



Taking the square root of the largest eigenvalue gives us the � norm � kAk� � ������
�

To determine the spectral radius of A� we �nd that A has the eigenvalues�

��������� ������� �������� �	���	�� and �������

Therefore the spectral radius of A� �or ��A�� is �	���	�� which is in fact less than all other
norms of A �kAk� � 	�� kAk� � ������
� kAk� � 	���

���	 Matrix Method for Stability

We demonstrate the matrix method for stability on two methods for solving the one di�
mensional heat equation� Recall that the explicit method can be written in matrix form
as

un
� � Aun � b ��	�����

where the tridiagonal matrix A have ���r on diagonal and r on the super� and sub�diagonal�
The norm of the matrix dictates how fast errors are growing �the vector b doesn�t come into
play�� If we check the in�nity or � norm we get

jjAjj� � jjAjj� � j�� �rj� jrj� jrj ��	�����

For � � r � ���� all numbers inside the absolute values are non negative and we get a norm
of �� For r � ���� the norms are �r � � which is greater than �� Thus we have conditional
stability with the condition � � r � ����

The Crank Nicholson scheme can be written in matrix form as follows

��I � rT �un
� � ��I � rT �un � b ��	���	�

where the tridiagonal matrix T has �� on diagonal and � on super� and sub�diagonals� The
eigenvalues of T can be expressed analytically� based on results of section ����

�s�T � � �� sin� s�

�N
� s � �� �� � � � � N � � ��	�����

Thus the iteration matrix is

A � ��I � rT �����I � rT � ��	���
�

for which we can express the eigenvalues as

�s�A� �
�� �r sin� s	

�N

� � �r sin� s	
�N

��	�����

All the eigenvalues are bounded by � since the denominator is larger than numerator� Thus
we have unconditional stability�

	��



���� Derivative Boundary Conditions

Derivative boundary conditions appear when a boundary is insulated

�u

�n
� � ��	�����

or when heat is transferred by radiation into the surrounding medium �whose temperature
is v�

�k�u
�n

� H�u� v� ��	�����

where H is the coe�cient of surface heat transfer and k is the thermal conductivity of the
material�

Here we show how to approximate these two types of boundary conditions in connection
with the one dimensional heat equation

ut � kuxx� � � x � � ��	���	�

u��� t� � g�t� ��	�����

�u�L� t�

�n
� �h�u�L� t�� v� ��	���
�

u�x� �� � f�x� ��	�����

Clearly one can use backward dierences to approximate the derivative boundary condition
on the left end �x � ��� but this is of �rst order which will degrade the accuracy in x
everywhere �since the error will propagate to the interior in time�� If we decide to use a
second order approximation� then we have

unN
� � unN��

��x
� �h�unN � v� ��	�����

where xN
� is a �ctitious point outside the interval� i�e� xN
� � � � �x� This will require
another equation to match the number of unknowns� We then apply the �nite dierence
equation at the boundary� For example� if we are using explicit scheme then we apply the
equation

un
�
j � runj�� � ��� �r�unj � runj
�� ��	�����

for j � �� �� � � � � N � At j � N � we then have

un
�
N � runN�� � ��� �r�unN � runN
�� ��	�����

Substitute the value of unN
� from ��	����� into ��	����� and we get

un
�
N � runN�� � ��� �r�unN � r

h
unN�� � �h�x �unN � v�

i
� ��	������

This idea can be implemented with any �nite dierence scheme�
Suggested Problem� Solve Laplace�s equation on a unit square subject to given temper�

ature on right� left and bottom and insulated top boundary� Assume �x � �y � h �
�

�
�

	�	



���� Hyperbolic Equations

An important property of hyperbolic PDEs can be deduced from the solution of the wave
equation� As the reader may recall the de�nitions of domain of dependence and domain of
in�uence� the solution at any point �x�� t�� depends only upon the initial data contained in
the interval

x� � ct� � x � x� � ct��

As we will see� this will relate to the so called CFL condition for stability�

������ Stability

Consider the �rst order hyperbolic

ut � cux � � ��	�������

u�x� �� � F �x�� ��	�������

As we have seen earlier� the characteristic curves are given by

x� ct � constant ��	�����	�

and the general solution is
u�x� t� � F �x� ct�� ��	�������

Now consider Lax method for the approximation of the PDE

un
�
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To check stabilty� we can use either Fourier method or the matrix method� In the �rst case�
we substitute a Fourier mode and �nd that

G � ea�t � cos � � i� sin� ��	�������

where the Courant number � is given by

� � c
�t

�x
� ��	�������

Thus� for the method to be stable� the ampli�cation factor G must satisfy

jGj � �

i�e� q
cos� � � �� sin� � � � ��	�������

This holds if
j�j � �� ��	�������
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c
�t

�x
� �� ��	��������

Compare this CFL condition to the domain of dependence discussion previously� Note that
here we have a complex number for the ampli�cation� Writing it in polar form�

G � cos � � i� sin� � jGjei� ��	��������

where the phase angle � is given by

� � arctan��� tan��� ��	��������

A good understanding of the ampli�cation factor comes from a polar plot of amplitude versus

relative phase� ��
�

for various � �see �gure ����
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Figure ��� Amplitude versus relative phase for various values of Courant number for Lax
Method

Note that the amplitude for all these values of Courant number never exceeds �� For
� � �� there is no attenuation� For � � �� the low �� � �� and high �� � ��� frequency
components are mildly attenuated� while the mid range frequencies are severly attenuated�

Suppose now we solve the same equation using Lax method but we assume periodic boundary
conditions� i� e�

unm
� � un� ��	������	�

The system of equations obtained is

un
� � Aun ��	��������
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�
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It is clear that the eigenvalues of A are

�j � cos
��

m
�j � �� � i� sin

��

m
�j � ��� j � �� � � � � m � ��	��������

Since the stability of the method depends on

j��A�j � � � ��	��������

one obtains the same condition in this case� The two methods yield identical results for
periodic boundary condition� It can be shown that this is not the case in general�

If we change the boundary conditions to

un
�
� � un� ��	��������

with
un
�
� � un� ��	��������

to match the wave equation� then the matrix becomes
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The eigenvalues are

�� � �� �� � �� ��
� � ��

�

q
��� ���	 � ��� ��	��������

Thus the condition for stability becomes

�
p
�� � � � �

p
�� �� ��	������	�

See work by Hirt ������� Warning and Hyett ������ and Richtmeyer and Morton �������
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������ Euler Explicit Method

Euler explicit method for the �rst order hyperbolic is given by �for c � ��

un
�
j � unj
�t

� c
unj
� � unj

�x
� � ��	�������

or

un
�
j � unj
�t

� c
unj
� � unj��

��x
� � ��	�������

Both methods are explicit and �rst order in time� but also unconditionally unstable�

G � �� �

�
��i sin�� for centred dierence in space� ��	�����	�

G � �� �

�
�i sin

�

�

�
ei��� for forward dierence in space� ��	�������

In both cases the ampli�cation factor is always above �� The only dierence between the
two is the spatial order�

������ Upstream Di�erencing

Euler�s method can be made stable if one takes backward dierences in space in case c � �
and forward dierences in case c � �� The method is called upstream dierencing or upwind
dierencing� It is written as

un
�
j � unj
�t

� c
unj � unj��

�x
� �� c � �� ��	���	���

The method is of �rst order in both space and time� it is conditionally stable for � � � � ��
The truncation error can be obtained by substituting Taylor series expansions for unj�� and
unj
� in ��	���	����

�

�t

�
�tut �

�

�
�t�utt �

�

�
�t�uttt � � � �

�

�
c

�x

�
u�

�
u��xux �

�

�
�x�uxx � �

�
�x�uxxx � � � �

��

where all the terms are evaluated at xj� tn�
Thus the truncation error is
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Table �� Organizing the calculation of the coe�cients of the modi�ed equation for upstream
dierencing

The modi�ed equation is

ut � cux � c
�x

�
��� ��uxx � c

�x�

�
���� � 	� � ��uxxx

�O
h
�x���t�x���x�t���t�

i ��	���	�	�

In the next table we organized the calculations� We start with the coe�cients of truncation
error� ��	���	���� after moving all terms to the left� These coe�cients are given in the second
row of the table� The �rst row give the partials of u corresponding to the coe�cients� Now
in order to eliminate the coe�cient of utt� we have to dierentiate the �rst row and multiply
by ��t��� This will modify the coe�cients of other terms� Next we eliminate the new
coe�cient of utx� and so on� The last row shows the sum of coe�cients in each column�
which are the coe�cients of the modi�ed equation�

The right hand side of ��	���	�	� is the truncation error� The method is of �rst order� If
� � �� the right hand side becomes zero and the equation is solved exactly� In this case the
upstream method becomes

un
�
j � unj��

which is equivalent to the exact solution using the method of characteristics�
The lowest order term of the truncation error contains uxx� which makes this term similar

to the viscous term in one dimensional �uid �ow� Thus when � �� �� the upstream dierencing
introduces an arti�cial viscosity into the solution� Arti�cial viscosity tends to reduce all
gradients in the solution whether physically correct or numerically induced� This eect�
which is the direct result of even order derivative terms in the truncation error is called
dissipation �
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Table 	� Organizing the calculation of the coe�cients of the modi�ed equation for upstream
dierencing

A dispersion is a result of the odd order derivative terms� As a result of dispersion� phase
relations between waves are distorted� The combined eect of dissipation and dispersion is
called di�usion � Diusion tends to spread out sharp dividing lines that may appear in the
computational region�

The ampli�cation factor for the upstream dierencing is

ea�t � � � �
�
�� e�i�

	
� �

or
G � ��� � � � cos ��� i� sin � ��	���	���

The amplitude and phase are then

jGj �
q
��� � � � cos ��� � ��� sin��� ��	���	�
�

� � arctan
Im�G�

Re�G�
� arctan

�� sin�
�� � � � cos �

� ��	���	���

See �gure �� for polar plot of the ampli�cation factor modulus as a function of � for
various values of �� For � � ���
� we get values outside the unit circle and thus we have
instability �jGj � ���

The ampli�cation factor for the exact solution is

Ge �
u�t��t�

u�t�
�

eikm�x�c�t
�t	�

eikm�x�ct� � e�ikmc�t � ei�e ��	���	���
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 Amplification factor modulus for upstream differencing
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Figure ��� Ampli�cation factor modulus for upstream dierencing

Note that the magnitude is �� and

�e � �kmc�t � ���� ��	���	���

The total dissipation error in N steps is

��� jGjN�A� ��	���	���

and the total dispersion error in N steps is

N��e � ��� ��	���	����

The relative phase shift in one step is

�

�e
�

arctan �� sin �
���
� cos �
��� � ��	���	����

See �gure �	 for relative phase error of upstream dierencing� For small � �wave number�
the relative phase error is

�

�e
� �� �

�
���� � 	� � ���� ��	���	����

If
�

�e
� � for a given �� the corresponding Fourier component of the numerical solution has

a wave speed greater than the exact solution and this is a leading phase error� otherwise
lagging phase error�

The upstream has a leading phase error for �
 � � � � �outside unit circle� and lagging
phase error for � � �
 �inside unit circle��
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Figure �	� Relative phase error of upstream dierencing

����� Inviscid Burgers� Equation

Fluid mechanics problems are highly nonlinear� The governing PDEs form a nonlinear system
that must be solved for the unknown pressures� densities� temperatures and velocities� A
single equation that could serve as a nonlinear analog must have terms that closely duplicate
the physical properties of the �uid equations� i�e� the equation should have a convective
terms �uux�� a diusive or dissipative term ��uxx� and a time dependent term �ut�� Thus
the equation

ut � uux � �uxx ��	������

is parabolic� If the viscous term is neglected� the equation becomes hyperbolic�

ut � uux � �� ��	������

This can be viewed as a simple analog of the Euler equations for the �ow of an inviscid �uid�
The vector form of Euler equations is

�U

�t
�
�E

�x
�
�F

�y
�
�G

�z
� � ��	����	�

where the vectors U�E� F� and G are nonlinear functions of the density ���� the velocity
components �u� v� w�� the pressure �p� and the total energy per unit volume �Et��
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�
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In this section� we discuss the inviscid Burgers� equation ��	������� As we have seen in a
previous chapter� the characteristics may coalesce and discontinuous solution may form� We
consider the scalar equation

ut � F �u�x � � ��	������

and if u and F are vectors
ut � Aux � � ��	������

where A�u� is the Jacobian matrix
�Fi
�uj

� Since the equation is hyperbolic� the eigenvalues

of the Matrix A are all real� We now discuss various methods for the numerical solution of
��	�������

������� Lax Method

Lax method is �rst order� as in the previous section� we have

un
�
j �

unj
� � unj��

�
� �t

�x

F n
j
� � F n

j��

�
� ��	��������

In Burgers� equation

F �u� �
�

�
u�� ��	��������

The ampli�cation factor is given by

G � cos � � i
�t

�x
A sin� ��	������	�
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Figure ��� Solution of Burgers� equation using Lax method

where A is the Jacobian
dF

du
� which is just u for Burgers� equation� The stability requirement

is �����t�x
umax

���� � �� ��	��������

because umax is the maximum eigenvalue of the matrix A� See Figure �� for the exact

versus numerical solution with various ratios
�t

�x
� The location of the moving discontinuity

is correctly predicted� but the dissipative nature of the method is evident in the smearing of
the discontinuity over several mesh intervals� This smearing becomes worse as the Courant
number decreases� Compare the solutions in �gure ���

������� Lax Wendro� Method

This is a second order method which one can develop using Taylor series expansion

u�x� t��t� � u�x� t� � �t
�u

�t
�

�

�
��t��

��u

�t�
� � � � ��	��������

Using Burgers� equation and the chain rule� we have

ut � �Fx � �Fuux � �Aux ��	��������

utt � �Ftx � �Fxt � ��Ft�x�
Now

Ft � Fuut � Aut � �AFx ��	������	�

Therefore
utt � � ��AFx�x � �AFx�x � ��	��������
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Substituting in ��	�������� we get

u�x� t��t� � u�x� t���t
�F

�x
�

�

�
��t��

�

�x

�
A
�F

�x

�
� � � � ��	������
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Now use centered dierences for the spatial derivatives
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� An
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�
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j��
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where

An
j
��� � A

�
unj � unj
�

�

�
� ��	��������

For Burgers� equation� F �
�

�
u�� thus A � u and

An
j
��� �

unj � unj
�

�
� ��	��������

An
j���� �

unj � unj��

�
� ��	��������

The ampli�cation factor is given by

G � �� �


�t

�x
A
��

��� cos ��� �i
�t

�x
A sin�� ��	���������

Thus the condition for stability is �����t�x
umax

���� � �� ��	���������

The numerical solution is given in �gure �
� The right moving discontinuity is correctly
positioned and sharply de�ned� The dispersive nature is evidenced in the oscillation near
the discontinuity�

The solution shows more oscillations when � � �� than when � � �� When � is reduced
the quality of the solution is degraded�

The �ux F �u� at xj and the numerical �ux fj
���� to be de�ned later� must be consistent
with each other� The numerical �ux is de�ned� depending on the scheme� by matching the
method to

un
�
j � unj �

�t

�x

h
fnj
��� � fnj����

i
� ��	���������

In order to obtain the numerical �ux for Lax Wendro method for solving Burgers� equation�
let�s add and subtract F n

j in the numerator of the �rst fraction on the right� and substitute
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Figure �
� Solution of Burgers� equation using Lax Wendro method

u for A
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Recall that F �u� �
�

�
u�� and factor the dierence of squares to get

fj
��� �
�

�
�Fj � Fj
��� �

�

�t

�x
�uj
����

��uj
� � uj�� ��	���������

The numerical �ux for Lax method is given by

fj
��� �
�

�

�
Fj � Fj
� � �x

�t
�uj
� � uj�

�
� ��	�������
�

Lax method is monotone� and Gudonov showed that one cannot get higher order than
�rst and keep monotonicity�

����� Viscous Burgers� Equation

Adding viscosity to Burgers� equation we get

ut � uux � �uxx� ��	������

The equation is now parabolic� In this section we mention analytic solutions for several
cases� We assume Dirichlet boundary conditions�

u��� t� � u�� ��	������
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u�L� t� � �� ��	����	�

The steady state solution �of course will not require an initial condition� is given by

u � u�)u

�
�� e�uReL�x�L��	

� � e�uReL�x�L��	

�
��	������

where

ReL �
u�L

�
��	����
�

and )u is the solution of the nonlinear equation

)u� �

)u� �
� e��uReL � ��	������

The linearized equation ��	������ is

ut � cux � �uxx ��	������

and the steady state solution is now

u � u�

�
�� eRL�x�L��	

�� e�RL

�
��	������

where

RL �
cL

�
� ��	������

The exact unsteady solution with initial condition

u�x� �� � sin kx ��	�������

and periodic boundary conditions is

u�x� t� � e�k
��t sin k�x� ct�� ��	�������

The equations ��	������ and ��	������ can be combined into a generalized equation

ut � �c� bu�ux � �uxx� ��	�������

For b � � we get the linearized Burgers� equation and for c � �� b � �� we get the nonlinear

equation� For c �
�

�
� b � �� the generalized equation ��	������� has a steady state solution

u � �c
b

�
� � tanh

c�x� x��

��

�
� ��	�����	�

Hence if the initial u is given by ��	�����	�� then the exact solution does not vary with time�
For more exact solutions� see Benton and Platzman �������
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The generalized equation ��	������� can be written as

ut � )Fx � � ��	�������

where
)F � cu�

�

�
bu� � �ux� ��	�����
�

or as
ut � Fx � �uxx� ��	�������

where

F � cu�
�

�
bu�� ��	�������

or
ut � A�u�ux � �uxx� ��	�������

The various schemes described earlier for the inviscid Burgers� equation can also be applied
here� by simply adding an approximation to uxx�

������� FTCS method

This is a Forward in Time Centered in Space �hence the name��

un
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j � unj
�t

� c
unj
� � unj��

��x
� �

unj
� � �unj � unj��

��x��
� ��	��������

Clearly the method is one step explicit and the truncation error

T�E� � O
�
�t� ��x��

	
� ��	��������

Thus it is �rst order in time and second order in space� The modi�ed equation is given by

ut � cux �

�
�� c��t

�

�
uxx � c

��x��

	



	r � �� � �

�

�
uxxx

� c
��x��

��

�
r

�
� 	

r�

�
� �� � ���r � 	��

�
uxxxx � � � �

��	������	�

where as usual

r � �
�t

��x��
� ��	��������

� � c
�t

�x
� ��	������
�

If r �
�

�
and � � �� the �rst two terms on the right hand side of the modi�ed equation vanish�

This is NOT a good choice because it eliminated the viscous term that was originally in the
PDE�
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Figure ��� Stability of FTCS method

We now discuss the stability condition� Using Fourier method� we �nd that the ampli��
cation factor is

G � � � �r�cos � � ��� i� sin�� ��	��������

In �gure �� we see a polar plot of G as a function of � and � for � � � and r �
�

�
and �� � �r

�left� and �� � �r �right�� Notice that if we allow �� to exceed �r� the ellipse describing G
will have parts outside the unit circle and thus we have instability� This means that taking
the combination of the conditions from the hyperbolic part �� � �� and the parabolic part

�r �
�

�
� is not enough� This extra condition is required to ensure that the coe�cient of uxx

is positive� i�e�

c�
�t

�
� �� ��	��������

Let�s de�ne the mesh Reynolds number

Re�x �
c�x

�
�

�

r
� ��	��������

then the above condition becomes

Re�x � �

�
� ��	��������

It turns out that the method is stable if

�� � �r� and r � �

�
� ��	���������

This combination implies that � � �� Therefore we have

�� � Re�x � �

�
� ��	���������

For Re�x � � FTCS will produce undesirable oscillations� To explain the origin of these
oscillations consider the following example� Find the steady state solution of ��	������ subject
to the boundary conditions

u��� t� � �� u��� t� � � ��	���������

	��



and the initial condition
u�x� �� � �� ��	�������	�

using an �� point mesh� Note that we can write FTCS in terms of mesh Reynolds number
as

un
�
j �

r

�
���Re�x� u

n
j
� � ��� �r�unj �

r

�
�� �Re�x� u

n
j��� ��	���������
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Figure ��� Solution of example using FTCS method

For the �rst time step
u�j � �� j � ��

and
u��� �

r

�
��� Re�x� � �� u��� � ��

and this will initiate the oscillation� During the next time step the oscillation will propagate
to the left� Note that Re�x � � means that unj
� will have a negative weight which is
physically wrong�

To eliminate the oscillations we can replace the centered dierence for cux term by a �rst
order upwind which adds more dissipation� This is too much� Leonard ������ suggeted a
third order upstream for the convective term �for c � ��

unj
� � unj��

��x
� unj
� � 	unj � 	unj�� � unj��

��x
�

������� Lax Wendro� method

This is a two step method�

u
n
���
j �

�

�

�
unj
��� � unj����

	
� �t

�x

�
F n
j
��� � F n

j����

	

� r
h�
unj���� � �unj���� � unj
���

	
�
�
unj
��� � �unj
��� � unj����

	i ��	��������

	��



The second step is

un
�
j � unj �

�t

�x

�
F
n
���
j
��� � F

n
���
j����

	
� r

�
unj
� � �unj � unj��

	
� ��	��������

The method is �rst order in time and second order in space� The linear stability condition
is

�t

��x��

�
A��t � ��

	
� �� ��	������	�

		�



�� Numerical Solution of Nonlinear Equations

���� Introduction

This chapter is included to give some information on the numerical solution of nonlinear
equations� For example� in Chapter �� we encountered the nonlinear equation

tan x � ��x ��������

with x �
p
�L and � �

�

hL
� when trying to compute the eigenvalues of ���������

We will give several methods for obtaining an approximate solution to the problem

f�x� � �� ��������

Fortran codes will also be supplied in the Appendix�
In general the methods for the solution of nonlinear equations are divided into three

categories �see Neta �������� Bracketing methods� �xed point methods and hybrid schemes�
In the following sections� we describe several methods in each of the �rst two categories�

���� Bracketing Methods

In this section we discuss algorithms which bracket the zero of the given function f�x�� In
all these methods� one assumes that an interval �a� b� is given on which f�x� changes its sign�
i�e�� f�a�f�b� � �� The methods yield successively smaller intervals containing the zero �
known to be in �a� b��

The oldest of such methods is called bisection or binary search method and is based upon
the Intermediate Value Theorem� Suppose f�x� is de�ned and continuous on �a� b�� with f�a�
and f�b� of opposite sign� Then there exists a point � � a � � � b� for which f��� � �� In
order to �nd � we successively half the interval and check which subinterval contains the zero�
Continue with that interval until the length of the resulting subinterval is !small enough�!

Bisection algorithm

Given f�x� � C�a� b�� where f�a�f�b� � ��
�� Set a� � a� b� � b� i � ��

�� Set xiM �
�

�
�ai � bi��

	� If jf
�
xiM
	
j is small enough or the interval is small enough go to step ��

�� If f
�
xiM
	
f �ai� � �� go to step ��


� Set ai
� � xiM � bi
� � bi� go to step ��
�� Set ai
� � ai� bi
� � xiM �
�� Add � to i� go to step ��
�� The procedure is complete�

Remark � The stopping criteria to be used are of three types�

		�



i� The length of the interval is smaller than a prescribed tolerance�
ii� The absolute value of f at the point xiM is below a prescribed tolerance�
iii� The number of iterations performed has reached the maximum allowed�

The last criterion is not necessary in this case of bisection since one can show that the
number of iterations N required to bracket a root � in the interval �a� b� to a given accuracy
� is

N � log�
jb� aj
�

��������

Remark � This algorithm will work if the interval contains an odd number of zeros counting
multiplicities� A multiple zero of even multiplicity cannot be detected by any bracketing
method� In such a case one has to use �xed point type methods described in the next
section�

Regula Falsi

The bisection method is easy to implement and analyze but converges slowly� In many
cases� one can improve by using the method of linear interpolation or Regula Falsi� Here
one takes the zero of the linear function passing through the points �a� f�a�� and �b� f�b��
instead of the midpoint� It is clear that the rate of convergence of the method depends on
the size of the second derivative�

Regula Falsi Algorithm

Given f�x� � C�a� b�� where f�a�f�b� � ��
�� Set x� � a� x� � b� f� � f�a�� f� � f�b��

�� Set x� � x� � f�
x� � x�
f� � f�

� f� � f�x���

	� If jf�j is small enough or jx� � x�j is small enough� go to step ��
�� If f� f� � �� go to step ��

� x� � x�� f� � f�� go to step ��
�� x� � x�� f� � f�� go to step ��
�� The procedure is complete�

Remark � This method may converge slowly �approaching the root one sidedly� if the cur�
vature of f�x� is large enough� To avoid such di�culty the method is modi�ed in the next
algorithm called Modi�ed Regula Falsi�

Modi�ed Regula Falsi Algorithm

Given f�x� � C�a� b�� where f�a�f�b� � ��
�� Set x� � a� x� � b� f� � f�a�� f� � f�b�� S � f��

�� Set x� � x� � f�
x� � x�
f� � f�

� f� � f�x���

	� If jf�j or jx� � x�j is small enough� go to step ��
�� If f� f� � �� go to step ��

� Set x� � x�� f� � f�� If f� S � � set f� � f���� go to step ��
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�� Set x� � x�� f� � f�� If f� S � �� set f� � f����
�� Set S � f�� go to step ��
�� The procedure is complete�

���� Fixed Point Methods

The methods in this section do not have the bracketing property and do not guarantee
convergence for all continuous functions� However� when the methods converge� they are
much faster generally� Such methods are useful in case the zero is of even multiplicity� The
methods are derived via the concept of the �xed point problem� Given a function f�x� on
�a� b�� we construct an auxiliary function g�x� such that � � g��� for all zeros � of f�x�� The
problem of �nding such � is called the �xed point problem and � is then called a �xed point
for g�x�� The question is how to construct the function g�x�� It is clear that g�x� is not
unique� The next problem is to �nd conditions under which g�x� should be selected�

Theorem If g�x� maps the interval �a� b� into itself and g�x� is continuous� then g�x� has at
least one �xed point in the interval�

Theorem Under the above conditions and

jg��x�j � L � � for all x � �a� b� ����	���

then there exists exactly one �xed point in the interval�

Fixed Point Algorithm

This algorithm is often called Picard iteration and will give the �xed point of g�x� in the
interval �a� b��

Let x� � �a� b� and construct the sequence fxng such that

xn
� � g�xn�� for all n 
 �� ����	���

Note that at each step the method gives one value of x approximating the root and not an
interval containing it�

Remark � If xn � � for some n� then

xn
� � g�xn� � g��� � �� ����	�	�

and thus the sequence stays �xed at ��

Theorem Under the conditions of the last theorem� the error en � xn � � satis�es

jenj � Ln

�� L
jx� � x�j� ����	���

			



Note that the theorem ascertains convergence of the �xed point algorithm for any x� � �a� b�
and thus is called a global convergence theorem� It is generally possible to prove only a local
result�

This linearly convergent algorithm can be accelerated by using Aitken�s� �� method � Let
fxng be any sequence converging to �� Form a new sequence fx�ng by

x�n � xn � ��xn�
�

��xn
����	�
�

where the forward dierences are de�ned by

�xn � xn
� � xn ����	���

��xn � xn
� � �xn
� � xn� ����	���

Then� it can be shown that fx�ng converges to � faster than fxng� i�e�

lim
n��

x�n � �

xn � �
� �� ����	���

Ste�ensen�s algorithm

The above process is the basis for the next method due to Ste�ensen� Each cycle of
the method consists of two steps of the �xed point algorithm followed by a correction via
Aitken�s� �� method� The algorithm can also be described as follows�

Let R�x� � g�g�x��� �g�x� � x

G�x� �

��
�

x if R�x� � �

x� �g�x�� x��

R�x�
otherwise�

����	���

Newton�s method

Another second order scheme is the well known Newton�s method� There are many ways
to introduce the method� Here� �rst we show how the method is related to the �xed point
algorithm� Let g�x� � x � h�x�f�x�� for some function h�x�� then a zero � of f�x� is also
a �xed point of g�x�� To obtain a second order method one must have g���� � �� which is

satis�ed if h�x� � � �

f ��x�
� Thus� the �xed point algorithm for g�x� � x � f�x�

f ��x�
yields a

second order method which is the well known Newton�s method�

xn
� � xn � f�xn�

f ��xn�
� n � �� �� � � � ����	����

For this method one can prove a local convergence theorem� i�e�� under certain conditions on
f�x�� there exists an � � � such that Newton�s method is quadratically convergent whenever
jx� � �j � ��

Remark � For a root � of multiplicity � one can modify Newton�s method to preserve the

quadratic convergence by choosing g�x� � x� �
f�x�

f ��x�
� This modi�cation is due to Schr'oder

���
��� If � is not known� one can approximate it as described in Traub ������ pp� �����	���
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���� Example

In this section� give numerical results demonstarting the three programs in the Appendix to
obtain the smallest eigenvalue � of �������� with L � h � �� That is

tan x � �x ��������

where
x �

p
�� ��������

We �rst used the bisection method to get the smallest eigenvalue which is in the interval

�

�
��� ��

�
� ������	�

We let x �


�

�
� � ��� �

�
� The method converges to �����
�� in �� iterations�

The other two programs are not based on bracketing and therefore we only need an initial
point

x� �
�

�
� � �� ��������

instead of an interval� The �xed point �Picard�s� method required � iterations and Stef�
fensen�s method required only � iterations� Both converged to a dierent eigenvalue� namely

x � ����	����

Newton�s method on the other hand converges to the �rst eigenvalue in only � iterations�
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���� Appendix

The �rst program given utilizes bisection method to �nd the root�

C THIS PROGRAM COMPUTES THE SOLUTION OF F�X��� ON THE

C INTERVAL �X��X
�

C

C ARGUMENT LIST

C X� LEFT HAND LIMIT

C X
 RIGHT HAND LIMIT

C XTOL INCREMENT TOLERANCE OF ORDINATE

C FTOL FUNCTION TOLERANCE

C

C F� FUNCTION EVALUATED AT X�

C F
 FUNCTION EVALUATED AT X


C IN IS THE INDEX OF THE EIGENVALUE SOUGHT

IN��

PI���ATAN���

MITER���

FTOL�����

XTOL������

X����IN����PI���

X
�IN�PI

WRITE����� X��X


� FORMAT��X��X� X
��
X�
E����

F� � F�X��IN�

F
 � F�X
�IN�

C FIRST� CHECK TO SEE IF A ROOT EXISTS OVER THE INTERVAL

IF�F��F
GT��� THEN

WRITE����� F��F


� FORMAT��X��F�X�� AND F�X
� HAVE SAME SIGN��
X�
E����

RETURN

END IF

C

C SUCCESSIVELY HALVE THE INTERVAL� EVALUATING F�R� AND TOLERANCES

C

DO ��� I � ��MITER

C R VALUE OF ROOT AFTER EACH ITERATION

R � �X��X
�	


C XERR HALF THE DISTANCE BETWEEN RIGHT AND LEFT LIMITS

C FR FUNCTION EVALUATED AT R

FR � F�R�IN�

XERR � ABS�X��X
�	


		�



WRITE���
� I� R� FR


 FORMAT��X��AFTER ITERATION ����X�I
��X��R ����X�E�����X�

��F�R� ����X�E����

C

C CHECK TOLERANCE OF ORDINATE

C

IF �XERRLEXTOL� THEN

WRITE �����

� FORMAT��X��TOLERANCE MET��

RETURN

ENDIF

C

C CHECK TOLERANCE OF FUNCTION

C

IF�ABS�FR�LEFTOL� THEN

WRITE�����

RETURN

ENDIF

C

C IF TOLERANCES HAVE NOT BEEN MET� RESET THE RIGHT AND LEFT LIMITS

C AND CONTINUE ITERATION

C

IF�FR�F�GT��� THEN

X� � R

F��FR

ELSE

X
 � R

F
 � FR

END IF

��� CONTINUE

WRITE ����� MITER

� FORMAT��X��AFTER��I���ITERATIONS � ROOT NOT FOUND��

RETURN

END

FUNCTION F�X�IN�

C THE FUNCTION FOR WHICH THE ROOT IS DESIRED

F�X�TAN�X��IN�PI

RETURN

END

		�



The second program uses the �xed point method�

C

C FIXED POINT METHOD

C

IMPLICIT REAL�� �A�H�O�Z�

PI��D��DATAN��D��

C COUNT NUMBER OF ITERATIONS

N��

C XTOL� X TOLERANCE

XTOL�����

C FTOL IS F TOLERANCE

FTOL������

C INITIAL POINT

C IN IS THE INDEC OF THE EIGENVALUE SOUGHT

IN��

X���IN����PI��

C MAXIMUM NUMBER OF ITERATIONS

MITER���

I��

PRINT ��I�X�

�� X
�G�X��

� FORMAT��X�I
�D����

N�N��

RG�G�X
�IN�

PRINT ��N�X
�RG

IF�DABS�X��X
�LEXTOL� GO TO 
�

IF�DABS�RG�LEFTOL� GO TO ��

X��X


IF�NLEMITER� GO TO ��


� CONTINUE

PRINT 
�X



 FORMAT�
X��X TOLERANCE MET X���D����

RETURN

�� PRINT ��X


� FORMAT��X��F TOLERANCE MET X���D����

RETURN

END

FUNCTION G�X�IN�

IMPLICIT REAL�� �A�H�O�Z�

G�DATAN�X��IN�PI

		�



RETURN

END

	��



The last program uses Newton�s method�

C

C NEWTON�S METHOD

C

IMPLICIT REAL�� �A�H�O�Z�

PI��D��DATAN��D��

C COUNT NUMBER OF ITERATIONS

N��

C XTOL� X TOLERANCE

XTOL�����

C FTOL IS F TOLERANCE

FTOL������

C INITIAL POINT

C IN IS THE INDEC OF THE EIGENVALUE SOUGHT

IN��

X���IN����PI��

C MAXIMUM NUMBER OF ITERATIONS

MITER���

PRINT ��N�X�

�� X
�G�X��IN�

� FORMAT��X�I
�D�����X�D����

N�N��

RG�G�X
�IN�

PRINT ��N�X
�RG

IF�DABS�X��X
�LEXTOL� GO TO 
�

IF�DABS�RG�LEFTOL� GO TO ��

X��X


IF�NLEMITER� GO TO ��


� CONTINUE

PRINT 
�X



 FORMAT�
X��X TOLERANCE MET X���D����

RETURN

�� PRINT ��X


� FORMAT��X��F TOLERANCE MET X���D����

RETURN

END

FUNCTION G�X�IN�

IMPLICIT REAL�� �A�H�O�Z�

G�X�F�X�IN�	FP�X�IN�

RETURN

	��



END

FUNCTION F�X�IN�

IMPLICIT REAL�� �A�H�O�Z�

PI��D��DATAN��D��

F�X�DTAN�X��IN�PI

RETURN

END

FUNCTION FP�X�IN�

IMPLICIT REAL�� �A�H�O�Z�

PI��D��DATAN��D��

FP��D����D�	DCOS�X����


RETURN

END

	��
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